Advertisement
Research-article| Volume 54, ISSUE 8, P1150-1161, August 1971

Download started.

Ok

In Vitro 15Nitrogen-tracer Technique for Some Kinetic Measures of Ruminal Ammonia1

  • Author Footnotes
    2 Present address: College of Agriculture, Department of Animal Production, University of Damascus, Damascus, Syria.
    M.F. Al-Rabbat
    Footnotes
    2 Present address: College of Agriculture, Department of Animal Production, University of Damascus, Damascus, Syria.
    Affiliations
    Department of Animal Science, University of California, Davis 95616
    Search for articles by this author
  • R.L. Baldwin
    Affiliations
    Department of Animal Science, University of California, Davis 95616
    Search for articles by this author
  • W.C. Weir
    Affiliations
    Department of Animal Science, University of California, Davis 95616
    Search for articles by this author
  • Author Footnotes
    1 This paper is part of a dissertation submitted by M. F. Al-Rabbat to, the Graduate Division, University of California, Davis, in partial fulfillment of Requirements for the Ph.D. degree.
    2 Present address: College of Agriculture, Department of Animal Production, University of Damascus, Damascus, Syria.
      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      To quantitate the several nitrogen fluxes which participate in the synthesis of ruminal microbes, an in vitro technique utilizing l5N ammonia was developed. The technique involves incubation of 15NH4-labelled rumen contents and analysis for 15N-ammonia and total ammonia N at specific time intervals during the incubation period.For a cow fed twice daily and a sheep fed at 2-hourly intervals, respectively, the technique yielded estimates of mean fractional turnover rates (Kam) of .226 and .314 per hour, and mean rates of ammonia nitrogen incorporation into cell materials (am) of 2.68 and 2.89 mg per hour per 50 of whole rumen digesta. The effect of rumen content donor on Kam was highly significant (P < 0.01); but the effect of am was not significant. For sheep fed alfalfa pellets continuously, about 9.2 g of ruminal microbiol cells per 100 g digestible organic matter fed are synthesized via ammonia nitrogen and about 61% of microbial nitrogen is derived from ammonia N. Presumably, 39% is derived from other nitrogen sources such as amino acid and peptide nitrogen.

      References

        • Acord C.R.
        • Mitchell Jr., G.E.
        • Little C.O.
        Combinations of nitrogen sources for starch digestion by mixed rumen bacteria.
        J. Dairy Sci. 1968; 51: 1249
        • Baldwin R.L.
        • Lucas H.L.
        • Cabrera R.
        Energetic relationships in the formation and utilization of fermentation end-products.
        in: Phillipson A.T. Third International Symposium on the Physiology of Digestion and Metabolism in the ruminant. Oriel Press, New Castle, England1970
        • Bauchop T.
        • Elsden S.R.
        The growth of microorganisms in relation to their energy supply.
        J. Gen. Microbiol. 1960; 23: 457
        • Blackburn T.H.
        Nitrogen metabolism in the rumen.
        in: Daugherty R.W. Physiology of Digestion in the Ruminant. Butterworth's Inc., Washington, D.C1965: 322
        • Bryant M.P.
        • Bobinson I.M.
        Studies on nitrogen requirements of some ruminal cellulolytic bacteria.
        Appl. Microbiol. 1961; 9: 96
        • Bryant M.P.
        • Robinson I.M.
        Apparent incorporation of ammonia and amino acid carbon during growth of selected species of ruminal bacteria.
        J. Dairy Sci. 1963; 46: 150
        • Buziassay C.
        • Tribe D.E.
        The synthesis of vitamins in the rumen of sheep. I. The effect of diet on the synthesis of thiamine, riboflavin and nicotinic acid.
        Australian J. Agr. Res. 1960; 11: 989
        • Carrol E.J.
        • Hungate R.E.
        The magnitude of the microbial fermentation in the bovine rumen.
        Appl. Microbiol. 1954; 2: 205
        • Ellis W.C.
        • Pfander W.H.
        Rumen microbial polynucleotide synthesis and its possible role in ruminant nitrogen utilization.
        Nature. 1965; 205: 974
        • el-Shazly K.
        • Hungate R.E.
        Method for measuring diaminopimelic acid in total rumen contents and its application to the estimation of bacterial growth.
        Appl. Microbiol. 1966; 14: 27
        • Gall L.S.
        • Smith S.E.
        • Becker D.E.
        • Stark C.N.
        • Loosli J.K.
        Rumen bacteria in cobalt-deficient sheep.
        Science. 1949; 109: 468
        • Goulden C.H.
        Methods of statistical analysis.
        (2nd ed.). John Wiley and Sons, Inc., New York and London1960
        • Hawk P.B.
        • Oser B.L.
        • Summerson W.H.
        Practical Physiological Chemistry.
        McGraw-Hill Book Company, Inc., New York1954
        • Hinders R.G.
        • Owen F.G.
        Ruminal and post-ruminal digestion of alfalfa fed as pellets or long hay.
        J. Dairy Sci. 1968; 51: 1253
        • Henderickx H.
        • Martin J.
        • Baert L.
        The use of 35S in the study of rumen metabolism.
        I.R.S.I.A Compt. Rend. Rech. 1962; 2: 61
        • Hogan J.P.
        The absorption of ammonia through the rumen of the sheep.
        Australian J. Biol. Sci. 1961; 14: 448
        • Hume I.D.
        • Moir R.J.
        • Somers M.
        Synthesis of microbial protein in the rumen. I. Influence of the level of nitrogen intake.
        Australian J. Agr. Res. 1970; 21: 283
        • Hume I.D.
        • Bird P.R.
        Synthesis of microbial protein in the rumen. IV. The influence of the level and form of dietary sulphur.
        Australian J. Agr. Res. 1970; 21: 315
        • Hungate R.E.
        Quantitative aspects of the rumen fermentation.
        In Physiology of Digestion in the Ruminant. Butterworth's Inc., Washington, D. C1965
        • Hungate R.E.
        The Rumen and Its Microbes.
        Academic Press, New York and London1966
        • Hyden S.
        Determination of the amount of fluid in the reticulorumen of the sheep and its rate of passage to the omasum.
        Kungl. Lantburkshoskölans Annaler. 1961; 27: 51
        • Luria S.E.
        The bacterial protoplasm: composition and organization.
        in: The Bacteria. Vol. I. Academic Press, Inc., New York1960: 1-34
        • McDonald I.W.
        Nutritional aspects of protein metabolism in ruminants.
        Australian Vet. J. 1968; 44: 145
        • Phillipson A.T.
        The digestion and absorption of nitrogenous compounds in the ruminant.
        in: Mammalian Protein Metabolism.Vol. 1. Academic Press, Inc., New York1964: 71
        • Pilgrim A.F.
        • Gray F.V.
        • Belling C.B.
        Production and absorption of ammonia in the sheep's stomach.
        British J. Nutrition. 1969; 23: 647
        • Pilgrim A.F.
        • Gray F.V.
        • Weller R.A.
        • Belling C.B.
        Synthesis of microbial protein from ammonia in the sheep's rumen and the proportion of dietary nitrogen converted into microbial nitrogen.
        British J. Nutrition. 1970; 24: 589
        • Pittman K.A.
        • Bryant M.P.
        Peptides and other nitrogen sources for growth of Bacteroides ruminicola.
        J. Bacteriol. 1964; 88: 401
        • Pittman K.A.
        • Lakshmanan S.
        • Bryant M.P.
        Oligopeptide uptake by Bacteroides ruminicola.
        J. Bacteriol. 1967; 93: 1499
        • Portugal A.V.
        • Sutherland T.M.
        Metabolism of glutamic and aspartic acids in whole rumen contents.
        Nature. 1966; 209: 510
        • Purser D.B.
        • Buechler S.M.
        Amino acid composition of rumen organisms.
        J. Dairy Sci. 1966; 49: 81
        • Purser D.B.
        • Moir R.J.
        Variation in rumen volume and associated effects as factors influencing metabolism and protozoa concentrations in the rumen of sheep.
        J. Animal Sci. 1966; 25: 516
        • Rescigno A.
        • Segre G.
        Drug and Tracer Kinetics.
        Blaisdell Publishing Company, London1966
        • Schwartz H.M.
        • Schoeman C.A.
        • Färber M.
        Utilization of Urea by Sheep. 1. Rates of breakdown of urea and carbohydrates in vivo and in vitro.
        J. Agr. Sci. Cambridge. 1964; 63: 289
        • Smith R.H.
        Reviews of the progress of dairy science. Section G. General. Nitrogen Metabolism and the Rumen.
        J. Dairy Res. 1969; 36: 316
        • Sokal R.R.
        • Rohlf F.J.
        Biometry.
        W. H. Freeman and Co, San Francisco1969
        • Ulbrich M.
        • Scholz H.
        Untersuchungen zum N-Staffwechsel beim lactie-renden Bind unter Verwendung von oral verabreichtem Ammonium bicarbonate-[15N] 5. Zum Einbau von Ammonium bicarbonate-N in verschiedene Fraktionen des Panseninhaltes.
        Archiv. für Tierernahrung. 1963; 13: 296
        • Ulbrich M.
        • Scholz H.
        Untersuchungen zum N-Stoffwechsel beim laktierenden Rind unter Verwendung von oral verabreichtem Harnstoff-[15N] 5. Zum Einbau von Harnstoff-N in Pansen-Bakterien und-Protozoen.
        Archiv. für Tierernährung. 1966; 16: 325
        • Walker D.J.
        Energy metabolism and rumen microorganisms.
        in: Daugherty R.W. Physiology of Digestion in the Ruminant. Butterworth's Inc., Washington, D.C1965: 296
        • Walker D.J.
        • Nader C.J.
        Method for measuring microbial growth in rumen content.
        Appl. Microbiol. 1968; 16: 1124
        • Warner A.C.I.
        The actual nitrogen sources for growth of heterotrophic bacteria in nonlimiting media.
        Biochem. J. (London). 1956; 64: 1
        • Weller R.A.
        • Gray F.V.
        • Pilgrim A.V.
        The conversion of plant nitrogen to microbial nitrogen in the rumen of the sheep.
        British J. Nutrition. 1958; 12: 421
        • Wright D.E.
        Metabolism of peptides by rumen microorganisms.
        Appl. Microbiol. 1967; 15: 547
        • Wright D.E.
        • Hungate R.E.
        Metabolism of glycine by rumen microorganisms.
        Appl. Microbiol. 1967; 15: 152
        • Zilversmit D.B.
        The design and analysis of isotope experiments.
        Amer. J. Med. 1960; 29: 832