Advertisement
Article| Volume 74, ISSUE 10, P3630-3644, October 1991

Download started.

Ok

Balancing Carbohydrates and Proteins for Optimum Rumen Microbial Yield1

  • W.H. Hoover
    Affiliations
    Division of Animal and Veterinary Sciences, West Virginia University, Morgantown 26506
    Search for articles by this author
  • Author Footnotes
    2 Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale.
    S.R. Stokes
    Footnotes
    2 Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale.
    Affiliations
    Division of Animal and Veterinary Sciences, West Virginia University, Morgantown 26506
    Search for articles by this author
  • Author Footnotes
    1 Published with the approval of the director of the West Virginia Agriculture and Forestry Experiment Station as Scientific Article Number 2242.
    2 Department of Animal Science, Food and Nutrition, Southern Illinois University, Carbondale.
      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Establishing conditions under which rumen fermentation will be optimized requires an understanding of the nutrient requirements of the mixed microbial population. The major nutrients required by rumen microbes are carbohydrates and proteins, but the most suitable sources and quantities needed to support maximum growth have not been determined. Digestion of proteins results in the production of peptides, which can accumulate in the rumen. Peptides are further hydrolyzed to amino acids, some of which are deaminated, producing ammonia. Although peptides, amino acids, and ammonia all may individually serve as sources of N for various microbes, the total population achieves the highest growth rate on mixtures of all three sources. In a somewhat analogous manner, carbohydrates are digested by exoenzymes to oligosaccharides that are available for crossfeeding by the mixed microbial population. Based on data from both in vitro and in vivo studies, there is general agreement that rate of digestion of carbohydrates is the major factor controlling the energy available for microbial growth; in addition, rate of digestion of total carbohydrate is directly related to proportion of starches, pectins, and sugars. Proteins affect both total fermentation and production of microbial DM per unit of carbohydrate fermented. It appears that the quantity of ruminally available protein needed to optimize microbial growth may, under some conditions, be as high as 14 to 15% of diet DM.

      Key words

      Abbreviations key:

      CC (continuous culture), DIP (degradable intake protein), NSC (non-structural carbohydrates), YATP (efficiency of microbial DM production)

      References

        • Abe M.
        • Iriki T.
        • Tobe N.
        • Shibui H.
        Sequestration of holotrich protozoa in the reticulorumen of cattle.
        Appl. Environ. Microbiol. 1981; 41: 758
        • Adams D.C.
        • Cochran R.C.
        • Currie P.O.
        Forage maturity effects on rumen fermentation, fluid flow and intake in grazing steers.
        J. Range Manage. 1987; 40: 404
        • Allison M.J.
        Nutrition of rumen bacteria.
        in: Dougherty R.W. Physiology of digestion in the ruminant. Butterworm Inc., Baltimore, MD1965: 369
        • Argyle J.L.
        • Baldwin R.L.
        Effects of amino acids and peptides on rumen microbial growth yields.
        J. Dairy Sci. 1989; 72: 2017
        • Bas F.J.
        • Stern M.D.
        • Merchen N.R.
        Influence of protein supplementation of alkaline hydrogen peroxide-treated wheat straw on ruminal microbial fermentation.
        J. Dairy Sci. 1989; 72: 1217
        • Ben-Ghedalia D.
        • Rubinstein A.
        The effect of dietary starch on the digestion by sheep of cell wall monosaccharide residues in maize silage.
        J. Sci. Food Agric. 1985; 36: 129
        • Ben-Ghedalia D.
        • Yosef E.
        • Miron J.
        • Est Y.
        The effects of starch- and pectin-rich diets on quantitative aspects of digestion in sheep.
        Anim. Feed Sci. Technol. 1989; 24: 289
        • Blackburn T.H.
        The protease liberated from Baeteroides amylophilus strain H18 by mechanical disintegration.
        J. Gen. Microbiol. 1968; 53: 27
        • Blackburn T.H.
        • Hobson P.N.
        Proteolysis in the sheep rumen by whole and fractionated rumen contents.
        J. Gen. Microbiol. 1960; 22: 272
        • Blake W.L.
        • Stern M.D.
        Influence of protein source on amino acid profile of effluent flowing from continuous culture of ruminal contents.
        J. Anim. Sci. 1988; 66: 2284
        • Briceno J.V.
        • Van Horn H.H.
        • Harris Jr., B.
        • Wilcox C.J.
        Effect of neutral detergent fiber and roughage source on dry matter intake and milk yield and composition of dairy cows.
        J. Dairy Sci. 1987; 70: 298
        • Brock F.M.
        • Forsberg C.W.
        • Buchanan-Smith J.G.
        Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors.
        Appl. Environ. Microbiol. 1982; 44: 561
        • Broderick G.A.
        • Craig W.M.
        Metabolism of peptides and amino acids during in vitro protein degradation by mixed rumen organisms.
        J. Dairy Sci. 1989; 72: 2540
        • Broderick G.A.
        • Wallace R.J.
        Effects of dietary nitrogen source on concentrations of ammonia, free amino acids and fluorescamine-reactive peptides in the sheep rumen.
        J. Anim. Sci. 1988; 66: 2233
        • Broderick G.A.
        • Wallace R.J.
        • McKain N.
        Uptake of small neutral peptides by mixed rumen microorganisms in vitro.
        J. Sci. Food Agric. 1988; 42: 109
        • Bryant M.P.
        • Robinson I.M.
        Some nutritional characteristics of predominant culturable ruminal bacteria.
        J. Bacteriol. 1962; 84: 605
        • Bryant M.P.
        • Robinson I.M.
        Apparent incorporation of ammonia and amino acid carbon during growth of selected species of ruminal bacteria.
        J. Dairy Sci. 1963; 46: 150
        • Chen G.
        • Russell J.B.
        More monensinsensitive, ammonia-producing bacteria from the rumen.
        Appl. Environ. Microbiol. 1989; 55: 1052
        • Chen G.
        • Russell J.B.
        • Sniffen C.J.
        A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation.
        J. Dairy Sci. 1987; 70: 1211
        • Chen G.
        • Sniffen C.J.
        • Russell J.B.
        Concentration and estimated flow of peptides from the mmen of dairy cattle: effects of protein quantity, protein solubility, and feeding frequency.
        J. Dairy Sci. 1987; 70: 983
        • Chen G.
        • Strobel H.J.
        • Russell J.B.
        • Sniffen C.J.
        Effect of hydrophobicity on utilization of peptides by ruminal bacteria in vitro.
        Appl. Environ. Microbiol. 1987; 53: 2021
        • Coen J.A.
        • Dehority B.A.
        Degradation and utilization of hemicellulose from intact forages by pure cultures of rumen bacteria.
        Appl. Microbiol. 1970; 20: 362
        • Coleman G.S.
        The cellulase content of 15 species of entodiniomorphid protozoa, mixed bacteria and plant debris isolated from the ovine rumen.
        J. Agric Sci. (Camb.). 1985; 104: 349
        • Cone J.W.
        • Cline-Theil W.
        • Malestein A.
        • van’t Klooster A.Th.
        Degradation of starch by incubation with rumen fluid. A comparison of different starch sources.
        J. Sci. Food Agric. 1989; 49: 173
        • Cotta M.A.
        Amylolytic activity of selected species of ruminal bacteria.
        Appl. Environ. Microbiol. 1988; 54: 772
        • Cotta M.A.
        Interaction of ruminal bacteria in the production and utilization of dextrins from soluble starch.
        in: Proc. 20th Conf. Rumen Function, Chicago, IL1989 (Abstr. 44)
        • Cotta M.A.
        • Hespell R.B.
        Proteolytic activity of the niminal bacterium Butyrivibrio fibrisolvens.
        Appl Environ. Microbiol. 1986; 52: 51
        • Craig W.M.
        • Brown D.R.
        • Broderick G.A.
        • Ricker D.B.
        Post-prandial compositional changes of fluid- and particle-associated ruminal microorganisms.
        J. Anim. Sci. 1987; 65: 1042
        • Czerkawski J.W.
        Degradation of solid feeds in the rumen: spatial distribution of microbial activity and its consequences.
        in: Milligan L. Grovum W. Dobson A. Control of digestion and metabolism in ruminants. Prentice-Hall, Englewood Cliffs, NJ1988: 158
        • Dahlberg E.M.
        • Stern M.D.
        • Ehle F.R.
        Effects of forage source on ruminal microbial nitrogen metabolism and carbohydrate digestion in continuous culture.
        J. Anim. Sci. 1988; 66: 2071
        • Demeyer D.
        • Van Neval C.
        Protein fermentation and growth by rumen microbes.
        Ann. Rech. Vet. 1979; 10: 277
        • Demeyer D.I.
        • Van Neval C.J.
        Nitrogen exchanges in the rumen.
        Proc. Nutr. Soc. 1980; 39: 89
        • Fadlalla B.
        • Kay R.N.B.
        • Goodall E.D.
        Effects of particle size on digestion of hay by sheep.
        J. Agric. Sci. (Camb.). 1987; 109: 551
        • Finlayson H.J.
        The effect of pH on the growth and metabolism of Streptococcus bovis in continuous culture.
        J. Appl. Bacteriol. 1986; 61: 201
        • Forsberg C.W.
        • Lam K.
        Use of adenosine 5′-triphosphate as an indicator of the microbiota biomass in rumen contents.
        Appl. Environ. Microbiol. 1977; 33: 528
        • Forsberg C.W.
        • Lovelock L.K.A.
        • Krumholz L.
        • Buchanan-Smith J.G.
        Protease activities of rumen protozoa.
        Appl. Environ. Microbiol. 1984; 47: 101
        • Froetschel M.A.
        • Croom Jr., W.J.
        • Hagler Jr., W.M.
        • Argenzio R.A.
        • Liacos J.A.
        • Broquist H.P.
        Effects of slaframine on ruminant digestive function: liquid turnover rate and fermentation patterns in sheep and cattle.
        J. Anim. Sci. 1987; 64: 1241
        • Fujimaki T.
        • Kobayashi Y.
        • Wakita M.
        • Hoshino S.
        Influence of amino acid supplement on cellulolysis and microbial yield in sheep rumen.
        J. Anim. Physiol. Nutr. 1989; 62: 119
        • Garrett J.E.
        • Goodrich R.D.
        • Stern M.D.
        • Meiske J.C.
        Rate of protein degradation and nutrient digestion of various nitrogen sources in continuous culture of rumen contents.
        Can. J. Anim. Sci. 1987; 67: 745
        • Glenn B.P.
        • Canale C.T.
        Ruminal fermentation of grasses and legumes. 1990.
        in: Proc. Maryland Nutr. Conf., College Park1990: 67
        • Gulati S.K.
        • Ashes J.R.
        • Gordon G.L.R.
        • Connell P.J.
        • Rogers P.L.
        Nutritional availability of amino acids from the rumen anaerobic fungus Neocallimastix sp. LM1 in sheep.
        J. Agric. Sci. (Camb.). 1989; 113: 383
        • Herrera-Saldana R.
        • Gomez-Alarcon R.
        • Torabi M.
        • Huber J.T.
        Influence of synchronizing protein and starch degradation in the rumen on nutrient utilization and microbial protein synthesis.
        J. Dairy Sci. 1990; 73: 142
        • Hespell R.B.
        Efficiency of growth by ruminal bacteria.
        Fed. Proc. 1979; 38: 2707
        • Hespell R.B.
        Microbial digestion of hemicelluloses in the rumen.
        Microbiol. Sci. 1988; 5: 362
        • Hino T.
        • Russell J.B.
        Relative contributions of ruminal bacteria and protozoa to the degradation of protein in vitro.
        J. Anim. Sci. 1987; 64: 261
        • Hoover W.H.
        Chemical factors involved in ruminal fiber digestion.
        J. Dairy Sci. 1986; 69: 2755
        • Hoover W.H.
        • Kincaid C.R.
        • Varga G.A.
        • Thayne W.V.
        • Junkins Jr., L.L.
        Effects of solids and liquid flows on fermentation in continuous culture. IV. pH and dilution rate.
        J. Anim. Sci. 1984; 58: 692
        • Hoover W.H.
        • Miller T.K.
        • Stokes S.R.
        • Thayne W.V.
        Effects of fish meals on rumen bacterial fermentation in continuous culture.
        J. Dairy Sci. 1989; 72: 2991
        • Hugue Q.M.D.A.
        • Thomsea K.V.
        Source of nitrogen for rumen microbes.
        Acta Agric. Scand. 1984; 34: 26
        • Hvelplund T.
        • Madsen J.
        Amino acid passage to the small intestine in dairy cows compared with estimates of microbial protein and undegradable dietary protein from analysis on the feed.
        Acta Agric. Scand. 1985; 25: 21
        • Jouany J.P.
        Effects of diet on populations of rumen protozoa in relation to fibre digestion.
        in: Nolan J. Leng R. Demeyer D. The roles of protozoa and fungi in ruminant digestion. Penambul Books, Armidale, New South Wales1988: 59 (Aust)
        • Jung H.G.
        Forage lignins and their effects on fiber digestibility.
        Agron. J. 1989; 81: 33
        • Kayouli C.
        • Van Nevel C.J.
        • Dendooven R.
        • Demeyer D.I.
        Effect of defaunation and refaunation of the rumen on rumen fermentation and N-flow in the duodenum of sheep.
        Arch. Anim. Nutr. 1986; 36: 827
        • Kennedy P.M.
        • Milligan L.P.
        Effects of cold exposure on digestion, microbial synthesis and nitrogen transformations in sheep.
        Br. J. Nutr. 1978; 39: 105
        • Kopecny J.
        • Wallace R.J.
        Cellular location and some properties of proteolytic enzymes of rumen bacteria.
        Appl. Environ. Microbiol. 1982; 43: 1026
        • Leedle J.A.Z.
        • Barsuhn K.
        • Hespell R.B.
        Post-prandial trends in estimated ruminal digesta porysaccharides and their relation to changes in bacterial groups and ruminal fluid characteristics.
        J. Anim. Sci. 1986; 62: 789
        • Leng R.A.
        Dynamics of protozoa in the rumen.
        in: Nolan J. Leng R. Demeyer D. The roles of protozoa and fungi in ruminant digestion. Penambul Books, Armidale, New South Wales1988: 51 (Aust)
        • Maeng W.J.
        • Baldwin R.L.
        Factors influencing rumen microbial growth rates and yields: effects of urea and amino acids over time.
        J. Dairy Sci. 1976; 59: 643
        • Maeng W.J.
        • Baldwin R.L.
        Factors influencing rumen microbial growth rates and yields: effect of amino acid additions to a purified diet with nitrogen from urea.
        J. Dairy Sci. 1976; 59: 648
        • Mahadevan S.
        • Erfle J.D.
        • Sauer F.D.
        Degradation of soluble and insoluble proteins by Bacteroides amylophilus protease and by rumen microorganisms.
        J. Anim. Sci. 1980; 50: 723
        • Marounek M.
        • Bartos S.
        Participation of microorganisms adherent on plant fibers in the breakdown of carbohydrates and in the metabolism of lactic acid in the rumen.
        Z. Tierphysiol. Tierernaehr. Futtermittelkd. 1983; 49: 66
        • McAllan A.B.
        • Smith R.H.
        Carbohydrate metabolism in the ruminant. Bacterial carbohydrates formed in the rumen and their contribution to digesta entering the duodenum.
        Br. J. Nutr. 1974; 31: 77
        • McCarthy Jr., R.D.
        • Klusmeyer T.H.
        • Vicini J.L.
        • Clark J.H.
        • Nelson D.R.
        Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of lactating cows.
        J. Dairy Sci. 1989; 72: 2002
        • McCollum F.T.
        • Galyean M.L.
        Cattle grazing blue grama rangeland. II. Seasonal forage intake and digesta kinetics.
        J. Range Manage. 1985; 38: 543
        • Mees D.C.
        • Merchen N.R.
        • Mitchel C.J.
        Effects of sodium bicarbonate on nitrogen balance, bacterial protein synthesis, and sites of nutrient digestion in sheep.
        J. Anim. Sci. 1985; 61: 985
        • Merchen N.R.
        • Firkins J.L.
        • Berger L.L.
        Effect of intake and forage level on ruminal turnover rates, bacterial protein synthesis and duo-denl amino acid flow in sheep.
        J. Anim. Sci. 1986; 62: 216
        • Michalowski T.
        Importance of protein solubility and nature of dietary nitrogen for the growth of rumen ciliates in vitro.
        in: Nolan J. Leng R. Demeyer D. The roles of protozoa and fungi in ruminant digestion. Penambul Books, Armidale, New South Wales1988: 223 (Aust)
        • Miller T.K.
        • Hoover W.H.
        • Poland Jr., W.W.
        • Wood R.W.
        Effects of low and high fill diets on intake and milk production in dairy cows.
        J. Dairy Sci. 1990; 73: 2453
        • Morrison I.M.
        Xylanase (hemicellulase) activity in cell-free rumen fluid.
        Carbohydr. Res. 1976; 47: 129
        • Murphy M.R.
        • Drone Jr., P.E.
        • Woodford S.T.
        Factors stimulating migration of holotrich protozoa into the rumen.
        Appl. Environ. Microbiol. 1985; 49: 1329
        • Newbold C.J.
        • Chamberlain D.G.
        • Thomas P.C.
        Effect of intraruminal infusions of sodium bicarbonate on the rate of passage and degradation of dietary proteins in cows given a silage-based diet.
        J. Sci. Food Agric. 1988; 42: 287
        • Nocek J.E.
        • Russell J.B.
        Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production.
        J. Dairy Sci. 1988; 71: 2070
        • Nolan J.V.
        McDonald I. Warner A. Quantitative models of nitrogen metabolism in sheep. Univ. New England Publ. Unit., Armidale, New South Wales1975: 416 (Aust)
        • Nugent J.H.A.
        • Mangan J.L.
        Characteristics of the rumen proteolysis of fraction I (18S) leaf protein from lucern (Medicago sativa L.).
        Br. J. Nutr. 1981; 46: 39
        • Orpin C.G.
        On the induction of zoosporogenesis in the rumen phycomycetes Neocallimastix frontalis, Piromonas communis and Sphaeromonas communis.
        J. Gen. Microbiol. 1977; 101: 181
        • Orpin C.G.
        The role of haems and related compounds in the nutrition of zoosporogenesis of the rumen chytridiomycete Neocallimastix frontalis H8.
        J. Gen. Microbiol. 1986; 132: 2179
        • Orpin C.G.
        Ecology of rumen anaerobic fungi in relation to the nutrition of the host animal.
        in: Nolan J. Leng R. Demeyer D. The roles of protozoa and fungi in ruminant digestion. Penambul Books, Armisdale, New South Wales1988: 29 (Aust)
        • Orpin C.G.
        • Greenwood Y.
        Nutritional and germination requirements of the rumen chytridiomycete Neocallimastix patriciarum.
        Trans. Br. Mycol. Soc. 1986; 86: 103
        • Osborne J.M.
        • Dehority B.A.
        Synergism in degradation and utilization of intake forage cellulose, hemicellulose, and pectin by three pure cultures of ruminal bacteria.
        Appl. Environ. Microbiol. 1989; 55: 2247
        • Pittman K.A.
        • Bryant M.P.
        Peptides and other nitrogen sources for growth of Bacteroides ruminicola.
        J. Bacteriol. 1964; 88: 401
        • Pittman K.A.
        • Lakshmanan S.
        • Bryant M.P.
        Oligopeptide uptake by Bacteroides ruminicola.
        J. Bacteriol. 1967; 93: 1499
        • Portugal A.V.
        • Sontherland T.M.
        Metabolism of glutamic and aspartic acids in whole rumen contents.
        Nature (Lond.). 1966; 209: 510
        • Prigge E.C.
        • Galyean M.L.
        • Owens F.N.
        • Wagner D.G.
        • Johnson R.R.
        Microbial protein synthesis in steers fed processed corn rations.
        J. Anim. Sci. 1978; 46: 249
        • Prins R.A.
        • Van Hal-Van Gestel J.C.
        • Counotte G.H.M.
        Degradation of amino acids and peptides by mixed rumen microorganisms.
        Z. Tierphysiol. Tieremaehr. Futtermittelkd. 1979; 42: 333
        • Robinson P.H.
        • Tamminga S.
        • Van Vuuren A.M.
        Influence of declining level of feed intake and varying the proportion of starch in the concentrate on rumen ingesta quantity, composition and kinetics of ingesta turnover in dairy cows.
        Livest Prod. Sci. 1987; 17: 37
        • Rode L.M.
        • Satter L.D.
        Effect of amount and length of alfalfa hay in diets containing barley or corn on site of digestion and rumen microbial protein synthesis in dairy cows.
        Can. J. Anim. Sci. 1988; 68: 445
        • Rode L.M.
        • Wealdey D.C.
        • Satter L.D.
        Effect of forage amount and particle size in diets of lactating cows on site of digestion and microbial protein synthesis.
        Can. J. Anim. Sci. 1985; 65: 101
        • Rogers J.A.
        • Marks B.C.
        • Davis C.L.
        • Clark J.H.
        Alteration of rumen fermentation in steers by increasing rumen fluid dilution rate with mineral salts.
        J. Dairy Sci. 1979; 62: 1599
        • Rowe J.B.
        • Davies A.
        • Broome A.W.J.
        Quantitative effects of defaunation on rumen fermentation and digestion in sheep.
        Br. J. Nutr. 1985; 54: 105
        • Russell J.B.
        Fermentation of cellodextrins by celhilolytic and noncelrulolytic rumen bacteria.
        Appl. Environ. Microbiol. 1985; 49: 572
        • Russell J.B.
        • Dombrowstri D.B.
        Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
        Appl. Environ. Microbiol. 1980; 39: 604
        • Russell J.B.
        • Sniffen C.J.
        • Van Soest P.J.
        Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria.
        J. Dairy Sci. 1983; 66: 763
        • Schneider P.L.
        • Beede D.K.
        • Wilcox C.J.
        Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments.
        J. Anim. Sci. 1988; 66: 112
        • Shriver B.J.
        • Hoover W.H.
        • Sargent J.P.
        • Crawford Jr., R.J.
        • Thayne W.V.
        Fermentation of a high concentrate diet as affected by ruminal pH and digesta flow.
        J. Dairy Sci. 1986; 69: 413
        • Sniffen C.J.
        • Robinson P.H.
        Microbial growth and flow as influenced by dietary manipulations.
        J. Dairy Sci. 1987; 70: 425
        • Stern M.D.
        • Hoover W.H.
        Methods for determining and factors affecting rumen microbial protein synthesis: a review.
        J. Anim. Sci. 1979; 49: 590
        • Stokes S.R.
        • Hoover W.H.
        • Miller T.K.
        • Blauweikel R.
        Ruminal digestion and microbial utilization of diets varying in type of carbohydrate and protein.
        J. Dairy Sci. 1991; 74: 871
        • Stokes S.R.
        • Hoover W.H.
        • Miller T.K.
        • Manski R.P.
        Impact of carbohydrate and protein levels on bacterial metabolism in continuous culture.
        J. Dairy Sci. 1991; 74: 860
        • Strobel H.J.
        • Russell J.B.
        Effect of pH and energy spilling on bacterial protein synthesis by carbohydrate-limited cultures of mixed rumen bacteria.
        J. Dairy Sci. 1986; 69: 2941
        • Tamminga S.
        • Van Vuuren A.M.
        Formation and utilization of end products of lignocellulose degradation in ruminants.
        Anim. Feed Sci. Technol. 1988; 21: 141
        • Theurer C.B.
        Grain processing effects on starch utilization by ruminants.
        J. Anim. Sci. 1986; 63: 1649
        • Thomsen K.V.
        The specific nitrogen requirements of rumen microorganisms.
        Acta Agric. Scand. 1985; 25: 125
        • Thomson D.J.
        • Beever D.E.
        • Latham M.J.
        • Sharpe M.E.
        • Terry R.A.
        The effect of inclusion of mineral salts in the diet on dilution rate, the pattern of rumen fermentation and the composition of the rumen microflora.
        J. Agric. Sci. (Camb.). 1978; 91: 1
        • Uden P.
        The effect of grinding and pelleting hay on digestibility, fermentation rate, digesta passage and rumen and faecal particle size in cows.
        Anim. Feed Sci. Technol. 1988; 19: 145
        • Ushida K.
        • Jouany J.P.
        Effect of protozoa on rumen protein degradation in sheep.
        Reprod. Nutr. Dev. 1985; 25: 1075
        • Ushida K.
        • Jouany J.P.
        • Thinvend P.
        Role of rumen protozoa in nitrogen digestion in sheep given two isonitrogenous diets.
        Br. J. Nutr. 1986; 56: 407
        • Varga G.A.
        • Hoover W.H.
        Rate and extent of neutral detergent fiber degradation of feed-stuffs in situ.
        J. Dairy Sci. 1983; 66: 2109
        • Varga G.A.
        • Meisterling E.M.
        • Daily R.A.
        • Hoover W.H.
        Effect of low and high fill diets in dry matter intake and reproductive performance during early lactation.
        J. Dairy Sci. 1984; 67: 1240
        • Wallace R.J.
        Synergism between different species of proteolytic rumen bacteria.
        Curr. Microbiol. 1985; 12: 59
        • Wallace R.J.
        • Brammall M.L.
        The role of different species of bacteria in the hydrolysis of protein in the rumen.
        J. Gen. Microbiol. 1985; 131: 821
        • Wallace R.J.
        • Broderick G.A.
        • Brammall M.L.
        Microbial protein and peptide metabolism in rumen fluid from faunated and ciliate-free sheep.
        Br. J. Nutr. 1987; 58: 87
        • Wallace R.J.
        • Joblin K.N.
        Proteolytic activity of a rumen anaerobic fungus.
        Fed. Bur. Microbiol. Soc. Microbiol. Lett. 1985; 29: 19
        • Wallace R.J.
        • McKain N.
        Analysis of peptide metabolism by mminal microorganisms.
        Appl. Environ. Microbiol. 1989; 55: 2372
        • Wallace R.J.
        • McKain N.
        • Newbold C.J.
        Metabolism of small peptides in rumen fluid. Accumulation of intermediates during hydrolysis of alanine oligimers, and comparison of peptidolytic activities of bacteria and protozoa.
        J. Sci. Food Agric. 1990; 50: 191
        • Wallace R.J.
        • Munro C.A.
        Influence of the rumen anaerobic fungus Neocallimastix frontalis on the proteolytic activity of a defined mixture of rumen bacteria growing on a solid substrate.
        Lett Appl. Microbiol. 1986; 3: 23
        • Waltz D.M.
        • Stern M.D.
        • Ilig D.J.
        Effect of ruminal protein degradation of blood meal and feather meal on the intestinal amino acid supply to lactating cows.
        J. Dairy Sci. 1989; 72: 1509
        • Wiedmeier R.D.
        • Arambel M.J.
        • Walters J.L.
        Effect of orally administered pilocarpine on ruminal characteristics and nutrient digestibility in cattle.
        J. Dairy Sci. 1987; 70: 284
        • Williams A.G.
        Factors affecting the formation of polysaccharide-degrading enzymes by rumen micro-organisms.
        Anim. Feed Sci. Technol. 1988; 21: 191
        • Williams A.G.
        Metabolic activities of rumen protozoa.
        in: Nolan J. Leng R. Demeyer D. The roles of protozoa and fungi in ruminant digestion. Penambul Books, Armidale, New South Wales1988: 97 (Aust)
        • Williams A.G.
        • Coleman G.S.
        Hemicellulose-degrading enzymes in rumen ciliate protozoa.
        Curr. Microbiol. 1985; 12: 85
        • Williams A.G.
        • Strachan N.H.
        Polysaccharide degrading enzymes in microbial populations from the liquid and solid fractions of bovine rumen digesta.
        Can. J. Anim. Sci. 1984; 64: 58
        • Williams A.G.
        • Withers S.E.
        • Strachan N.H.
        Postprandial variations in the activity of polysaccharide-degrading enzymes in microbial populations from the digesta solids and liquor fractions of rumen contents.
        J. Appl. Bacteriol. 1989; 66: 15
        • Windschitl P.M.
        • Stern M.D.
        Effects of urea supplementation of diets containing lignosulfonate-treated soybean meal on bacterial fermentation in continuous culture.
        J. Anim. Sci. 1988; 66: 2948
        • Windschitl P.M.
        • Stern M.D.
        Evaluation of calcium lignosulfbnate-treated soybean meal as a source of rumen protected protein for dairy cattle.
        J. Dairy Sci. 1988; 71: 3310
        • Wojciechowicz M.
        A polygalacturonate lyase produced by Lachnospira multiparus isolated from the bovine rumen.
        J. Gen. Microbiol. 1980; 117: 193
        • Wolin M.J.
        • Manning G.B.
        • Nelson W.O.
        Ammonium salts as a sole source of N for the growth of Streptococcus bovis.
        J. Bacteriol. 1959; 71: 674
        • Woodford S.T.
        • Murphy M.R.
        Effect of forage physical form on chewing activity, dry matter intake, and rumen function of dairy cows in early lactation.
        J. Dairy Sci. 1988; 71: 674
        • Wright D.E.
        Metabolism of peptides by rumen microorganisms.
        Appl. Microbiol. 1967; 15: 547
        • Zerbini E.
        • Polan C.E.
        • Herbein J.H.
        Effect of dietary soybean meal and fish meal on protein digesta flow in Holstein cows during early and midlaclation.
        J. Dairy Sci. 1988; 71: 1248