Advertisement
Article| Volume 84, ISSUE 6, P1310-1319, June 2001

Colloidal Calcium Phosphates in Casein Micelles Studied by Slow-Speed-Spinning 31P Magic Angle Spinning Solid-State Nuclear Magnetic Resonance

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      The composition of bovine casein micelles was analyzed by 31P magic angle spinning solid-state nuclear magnetic resonance spectroscopy. By looking at isotropic and anisotropic 31P chemical shift parameters, resonance line shapes, the combination of single-pulse and 1H to 31P cross-polarization spectra, and comparison with spectra for various model compounds combined with multiple-component simulation and iterative fitting procedures, we were able to identify and quantify a variety of inorganic and organic phosphates in the micelles. These include phosphates from mobile and immobile inorganic hydroxyapatite-type phosphates as well as phosphates from κ-casein and the Ca2+-binding phosphoserines from αs1−, αs2−, and β-casein. This information is discussed in relation to previous knowledge and various models for the colloid formation.

      Key words

      References

        • Alaimo M.H.
        • Wickham E.D.
        • Farrell Jr, H.M.
        Effects of self-association of αs1-casein and its cleavage fractions αs1-casein (136–196) and αs1-casein (1–197), on aromatic circular di-chroic spectra: Comparison with predicted models.
        Biochim. Bio-phys. Acta. 1999; 1431: 395-409
        • Alaimo M.H.
        • Kumosinski T.F.
        • Farrell Jr, H.M.
        High-resolution solid-state NMR of milk products.
        J. Magn. Reson. Anal. 1996; 2: 267-274
        • Bak M.
        • Rasmussen J.T.
        • Nielsen N.C.
        SIMPSON: A general simulation program for solid-state NMR.
        J. Magn. Reson. 2000; 147: 296-300
        • Bak M.
        • Thomsen J.K.
        • Jakobsen H.J.
        • Petersen S.E.
        • Petersen T.E.
        • Nielsen N.C.
        Solid-state 13C and 31P NMR analysis of urinary stones.
        J. Urol. 2000; 164: 856-863
        • Bauer R.
        • Hansen M.
        • Hansen S.
        • Øgendal L.
        • Lomholt S.
        • Qvist K.
        • Horne D.
        The structure of casein aggregates during renneting studied by indirect Fourier transform and inverse Laplace transformation of static and dynamic light scattering data, respectively.
        J. Chem. Phys. 1995; 103: 2725-2737
        • Bhattacharyya J.
        • Das K.P.
        Molecular chaperone-like properties of an unfolded protein, αs-casein.
        J. Biol. Chem. 1999; 274: 15505-15509
        • Creamer L.K.
        • Plowman J.E.
        • Liddell M.J.
        • Smith M.H.
        • Hill J.P.
        Micelle stability: κ-casein structure and function.
        J. Dairy Sci. 1998; 81: 3004-3012
        • Dalgleish D.G.
        Casein micelles as colloids: Surface structures and stabilities.
        J. Dairy Sci. 1998; 81: 3013-3018
        • Dalgleish D.G.
        • Law A.J.R.
        pH-Induced dissociation of bovine casein micelles. II. Mineral solubilization and its relation to casein release.
        J. Dairy Res. 1989; 56: 727-735
        • Davies D.T.
        • Law A.J.R.
        An improved method for the quantitative fractionation of casein mixtures using ion-exchange chromatography.
        J. Dairy Res. 1977; 44: 213-221
        • Downey W.K.
        • Murphy R.F.
        The temperature dependent dissociation of b-casein from bovine casein micelles.
        J. Dairy Res. 1970; 37: 361
        • Farrell Jr., H.M.
        • Thompson M.P.
        The caseins of milk as calcium-binding proteins.
        in: Calcium-Binding Proteins. Vol. 2. CRC Press, Boca Raton, FL1988: 117-137
        • Gagnaire V.
        • Pierre A.
        • Molle D.
        • Leonil J.
        Phosphopeptides interacting with colloidal calcium phosphate isolated by tryptic hydrolysis of bovine casein micelles.
        J. Dairy Res. 1996; 63: 405-422
        • Griffin M.C.A.
        • Roberts G.C.K.
        A 1H NMR study of bovine casein micelles.
        Biochem. J. 1985; 228: 273-276
        • Hansen S.
        • Bauer R.
        • Lomholt S.B.
        • Quist K.B.
        • Pedersen J.S.
        • Mortensen K.
        Structure of casein micelles studied by small-angle neutron scattering.
        Eur. Biophys. J. 1996; 24: 43-147
        • Holt C.
        • Hasnain S.S.
        • Hukins D.W.L.
        Structure of bovine milk calcium phosphate determined by X-ray absorption spectroscopy.
        Biochim. Biophys. Acta. 1982; 719: 299-303
        • Holt C.
        • Sawyer L.
        Primary and predicted secondary structure of the caseins in relation to their biological function.
        Protein Eng. 1988; 2: 251-259
        • Holt C.
        • Timmins P.A.
        • Errington N.
        • Leaver J.
        A core-shell model of calcium phosphate nanoclusters stabilized by β-casein phosphopeptides, derived from sedimentation equilibrium and small-angle X-ray and neutron-scattering measurements.
        Eur. J. Biochem. 1998; 252: 73-78
        • Holt C.
        • Wahlgren N.M.
        • Drakenberg T.
        Ability of a β-casein phosphopeptide to modulate the precipitation of calcium phosphate by forming amorphous dicalcium phosphate nanoclusters.
        Biochem. J. 1996; 314: 1035-1039
        • Huq N.L.
        • Cross K.J.
        • Reynolds E.C.
        A 1H-NMR study of the casein phosphopeptide αs1-casein (59-79).
        Biochim. Biophys. Acta. 1995; 1247: 201-208
        • Kakalis L.T.
        • Kumosinski T.F.
        • Farrell Jr, H.M.
        A multinuclear, high-resolution NMR study of bovine casein micelles and submicelles.
        Biophys. Chem. 1990; 38: 87-98
        • Kumonsinski T.F.
        • Pessen H.
        • Farrell Jr., H.M.
        • Brumberger H.
        Determination of the quaternary structure of bovine caseins by small-angle X-ray scattering.
        Arch Biochem. Biophys. 1988; 266: 548-561
        • Mcmahon D.J.
        • Mcmanus W.R.
        Rethinking casein micelle structure using electron microscopy.
        J. Dairy Sci. 1998; 81: 2985-2993
        • Mercier J.-C.
        Phosphorylation of caseins, present evidence for an amino acid triplet code posttranslationally recognized by specific kinases.
        Biochimie. 1981; 63: 1-17
        • Opella S.J.
        • Frey M.H.
        Selection of nonprotonated carbon resonances in solid-state nuclear magnetic resonance.
        J. Am. Chem. Soc. 1979; 101: 5854-5856
        • Pines A.
        • Gibby M.G.
        • Waugh J.S.
        Proton-enhanced NMR of dilute spins in solids.
        J. Chem. Phys. 1973; 59: 569-590
        • Rasmussen L.K.
        • Højrup P.
        • Petersen T.E.
        The multimeric structure and disulfide-bonding pattern of bovine κ-casein.
        Eur. J. Biochem. 1992; 207: 215-222
        • Rasmussen L.K.
        • Johnsen L.B.
        • Tsiora A.
        • Sørensen E.S.
        • Thomsen J.K.
        • Nielsen N.C.
        • Jakobsen H.J.
        • Petersen T.E.
        Disulphide-linked caseins and casein micelles.
        Int. Dairy J. 1999; 9: 215-218
        • Rasmussen L.K.
        • Sørensen E.S.
        • Petersen T.E.
        • Nielsen N.C.
        • Thomsen J.K.
        Characterization of phosphate sites in native ovine, caprine, and bovine casein micelles and their caseinomacropeptides: A solid-state phosphorus-31 nuclear magnetic resonance and sequence and mass spectrometric study.
        J. Dairy Sci. 1997; 80: 607-614
        • Rollema H.S.
        Casein association and micelle formation.
        in: Fox P.F. Advanced Dairy Chemistry. 1. Proteins. Elsevier Applied Science, London, UK1992: 110-140
        • Rollema H.S.
        • Brinkhuis J.A.
        A 1H NMR study of bovine casein micelles. The influence of pH, temperature and calcium ions on micellar structure.
        J. Dairy Sci. 1989; 56: 417-425
        • Rose D.
        Relation between micellar and serum casein in bovine milk.
        J. Dairy Sci. 1968; 51: 1897-1902
        • Rothwell W.P.
        • Waugh J.S.
        • Yesinowski J.P.
        High-resolution variable-temperature 31P NMR of solid calcium phosphates.
        J. Am. Chem. Soc. 1980; 102: 2637
        • Schmidt D.G.
        Association of caseins and casein micelle structure.
        in: Fox P.F. Developments in Dairy Chemistry. Elsevier Applied Science, London, UK1982: 61-86
        • Stothardt P.H.
        Subunit structure of casein micelles by small-angle neutron scattering.
        J. Mol. Biol. 1989; 208: 635-639
        • Swaisgood H.E.
        Chemistry of the caseins.
        in: Fox P.F. Advanced Dairy Chemistry. 1. Proteins. Elsevier Applied Science, London, UK1992: 63-110
        • Termine J.D.
        • Peckauskas R.A.
        • Posner A.S.
        Calcium phosphate formation in vitro. II. Effects of environments on amorphous-crystalline transformation.
        Arch. Biochem. Biophys. 1970; 140: 318-325
        • Termine J.D.
        • Posner A.S.
        Calcium phosphate formation in vitro. I. Factors affecting initial phase separation.
        Arch. Biochem. Biophys. 1970; 140: 307-317
        • Thomsen J.K.
        • Jakobsen H.J.
        • Nielsen N.C.
        • Petersen T.E.
        • Rasmussen L.K.
        Solid-state magic angle spinning 31PNMR studies of native casein micelles.
        Eur. J. Biochem. 1995; 230: 454-459
        • Wahlgren N.M.
        • Dejmek P.
        • Drakenberg T.
        A 43Ca and 31P NMR study of the calcium and phosphate equilibria in heated milk solutions.
        J. Dairy Res. 1990; 57: 355-364