Advertisement
Research-article| Volume 84, SUPPLEMENT , E84-E92, June 2001

Proteolysis and Lipolysis of Goat Milk Cheese

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Numerous varieties of goat milk cheeses are produced worldwide. Maturation or ripening of goat and other species milk cheeses is governed by interplay of many different factors. Proteolysis and lipolysis are two major biochemical processes in the multifaceted phenomenon of cheese aging, which involves a variety of chemical, physical, and microbiological changes under controlled environmental conditions. Proteolysis of cheeses in general is influenced by several factors including plasmin, chymosin, protease from starter and nonstarter bacteria, pH and moisture levels of the curds, storage temperature and time, salt content, salt-to-moisture ratio, and humidity. Primary factors affecting lipolysis in cheeses are fatty acid composition, lipolytic enzymes, lipolytic microorganisms, moisture, temperature, storage time, oxygen, and surface area, etc. Several analytical techniques have been used to measure proteolysis of goat and (or) cow milk cheeses during ripening, such as solubility of peptides and amino acids in various solvents or precipitants, liberation of reactive functional groups, various forms of chromatography, and different forms of electrophoresis. Lipolysis of goat milk cheeses has been estimated by acid degree value (ADV), acid value, and free fatty acid concentration, while lipid oxidation of dairy goat products can be determined by peroxide value, thiobarbuturic acid value (TBA). Recent reports have shown that goat cheeses had greater rates of protein degradation than cow counterparts, and that aging time and temperature synergistically elevated most of proteolytic and lipolytic indices in goat cheeses. This paper will further discuss proteolytic and lipolytic characteristics of goat milk cheeses.

      Key words

      References

        • Aimutis W.R.
        • Eigel W.M.
        Identification of λ-casein as plasmin-derived fragments of bovine β-casein.
        J. Dairy Sci. 1982; 65: 175
        • Alais C.
        • Mocquot G.
        • Nitschmann H.
        • Zahler P.
        Das lab und seine Wirkung auf das Casein der Milch. VII. Uber die Abspaltung von Nicht-Protein-Stickstoff (NPN) aus casein durch Lab und ihre Beziehung zur Primarreaktion der Labgerinnung der Milch.
        Helv. Chim. Acta. 1953; 36: 1955
        • Allen J.C.
        • Wrieden W.L.
        Influence of milk protein on the lipid oxidation in aqueous emulsion. I. Casein, whey protein and lactalbumin.
        J. Dairy Res. 1982; 49: 239
        • AOAC
        Official Method of Analysis.
        14th ed. Assoc. of Official Analytical Chemists, Washington DC1984
        • American Oil Chemist's Society (AOCS)
        Official and Tentative Method Cd 12-57.
        American Oil Chemist's Society, Chicago, IL1987
        • Aston J.W.
        • Creamer L.K.
        Contribution of the components of the water-soluble fraction to the flavour of Cheddar cheese.
        N.Z. J. Dairy Sci. Technol. 1986; 21: 229
        • Attaie R.
        • Richter R.L.
        Formation of volatile free fatty acids during ripening of Cheddar-like hard goat cheese.
        J. Dairy Sci. 1996; 79: 717-724
        • Bassier A.
        Personal communication.
        Couturier USA, Inc., Los Angeles, CA1998
        • Bertola N.C.
        • Bevilacqaua A.E.
        • Zaritzky N.E.
        Proteolytic and rheological evaluation of maturation of Tybo Argentino cheese.
        J. Dairy Sci. 1992; 75: 3273
        • Bican P.
        High performance liquid chromatography of casein peptides.
        J. Dairy Sci. 1983; 66: 2195
        • Boelens H.
        • Haring H.G.
        • de Reijke D.
        Threshold values of and human preferences for 4-ethyloctanoic and 3-methylbutanoic acids.
        Perfum. Flavor. 1983; 8: 71
        • Brennand C.P.
        • Ha J.K.
        • Lindsay R.C.
        Aroma properties and thresholds of some branched-chain and other minor volatile fatty acids occurring in milk fat and meat lipids.
        J. Sensory Study. 1989; 4: 105
        • Carles C.
        • Dumas B.R.
        Kinetics of action of chymosin (rennin) on some peptide bonds of bovine β-casein.
        Biochemistry. 1984; 23: 6839
        • Champion H.M.
        • Stanley D.W.
        HPLC separation of biter peptides from Cheddar cheese.
        Can. Inst. Food Sci. Technol. J. 1982; 15: 283
        • Chandan R.C.
        • Attaie R.
        • Shahani K.M.
        Nutritional aspects of goat milk and its products.
        Proc. V. Int’l Conf. on Goats. 1992; Vol.II (Part I): 399-420
      1. Chin. 1992. Evaluation of hydrolytic and oxidative lipolysis of commercial goat milk cheeses stored under different time and temperature treatment regimen. M.S. Thesis. Prairie View A&M University, Texas.

        • Cousin M.A.
        Presence and activity of psychrotrophic microorganisms in milk and dairy products: A review.
        J. Food Prot. 1982; 45: 172
        • Creamer L.K.
        • Olson N.F.
        Pheological evaluation of maturing Cheddar cheese.
        J. Food Sci. 1982; 47: 631
        • Creamer L.K.
        • Richardson B.C.
        Identification of the primary degradation product of αs1-casein in Cheddar cheese.
        N.Z. J. Dairy Sci. Technol. 1974; 9: 9
        • Creamer L.K.
        • Lawrence R.C.
        • Gilles J.
        Effect of acidification of cheese milk on the resultant Cheddar cheese.
        N.Z. J. Dairy Sci. Technol. 1985; 20: 185
        • Dahlberg A.C.
        • Kosikowski F.V.
        The flavor, volatile acidity, and soluble protein of Cheddar and other cheese.
        J. Dairy Sci. 1947; 30: 165
        • Dalgleish D.G.
        The enzymatic coagulation of milk.
        in: Cheese: Chemistry, Physics and Microbiology. Vol. 1. Elsevier Appl. Sci. Publ. Ltd., London, UK1987 (63-96)
        • Day E.A.
        Autoxidation of milk lipids.
        J. Dairy Sci. 1960; 43: 1064
        • de Jong L.
        A quantitative electrophoretic method of studying cheese ripening.
        Neth. Milk Dairy J. 1975; 29: 162
        • de Jong L.
        Protein breakdown in soft cheese and its relation to consistency. 3. The micellar structure of Meshanger cheese.
        Neth. Milk Dairy J. 1978; 32: 15
        • Deeth H.C.
        • Fitzgerald C.H.
        Lipolysis in dairy products: A review.
        Au. J. Dairy Technol. 1976; 31: 53-64
        • Edwards J.
        • Kosikowski F.V.
        Bitter compounds from Cheddar cheese.
        J. Dairy Sci. 1983; 66: 727
        • Elliot J.M.
        • Haan B.D.
        • Parkin K.L.
        An improved liquid chromatographic method for the quantitative determination of free fatty acid in milk products.
        J. Dairy Sci. 1989; 72: 2478
        • Farkye N.Y.
        • Fox P.F.
        • Fitzgerald G.F.
        • Daly C.
        Proteolysis and flavor development in Cheddar cheese made exclusively with singlestrain proteinase-positive or proteinase-negative starters.
        J. Dairy Sci. 1990; 73: 874
        • Fedrick I.A.
        • Dulley J.R.
        The effect of elevated storage temperatures on the rheology of Cheddar cheese.
        N.Z. J. Dairy Sci. Technol. 1984; 19: 141
        • Fennema O.R.
        Fennema O.R. Food Chemistry. Marcel Dekker, Inc., New York, NY1996: 272-280
        • Fontecha J.
        • Pelaez C.
        • Juarez M.
        • Requena T.
        • Gomez C.
        Biochemical and microbiological characteristics of artisanal hard goat's cheese.
        J. Dairy Sci. 1990; 73: 1150-1157
        • Foster P.M.D.
        • Green M.L.
        A quantitative gel filtration method for analysis of the proteinaceous fraction of Cheddar cheese.
        J. Dairy Res. 1974; 41: 259
        • Fox P.F.
        Proteolysis during cheese manufacture and ripening.
        J. Dairy Sci. 1989; 72: 1379-1400
        • Fredriksen E.B.
        • Steinsholt K.
        Processed cheese goat's milk.
        Meierposten. 1978; 67: 393
        • Galli A.
        • Ottogalli G.
        • Volongterio G.
        Microbiological and chemical characteristics of Italian fresh cheeses: the caprine cheeses.
        Ind. Latte. 1976; 12: 21
        • Gupta S.K.
        • Whitney R.M.
        • Tuckey S.L.
        Brine soluble protein of Cheddar and Gouda cheese.
        J. Dairy Sci. 1974; 57: 540
        • Ha J.K.
        • Lindsay R.C.
        Contributions of cow, sheep, and goat milks to characterizing branched-chain fatty acid and phenolic flavors in varietal cheeses.
        J. Dairy Sci. 1991; 74: 3267-3274
        • Haenlein G.F.W.
        Role of goat meat and milk in human nutrition.
        Proc. V. Intl. Conf. on Goats. 1992; Vol. II (Part II): 575-580
        • Harper W.J.
        Lipase system used in the manufacture of Italian cheese. II. Selective hydrolysis.
        J. Dairy Sci. 1957; 40: 556
        • Hicks C.L.
        • Onuorah C.
        • O’Leary J.
        • Langlois G.E.
        Effect of milk quality and low temperature storage on cheese yield–a summation.
        J. Dairy Sci. 1986; 69: 649
        • Huber L.
        • Klostermeyer H.
        Isolierung und Identifizierung eines Bitterstoffes aus Butterkase.
        Milchwissenschaft. 1974; 29: 449
        • Humphrey R.S.
        • Newsome L.J.
        High performance ionexchange chromatography of the major bovine milk proteins.
        N.Z. J. Dairy Sci. Technol. 1984; 19: 197
        • Igoshi K.
        • Kaminogawa S.
        • Yamauchi K.
        Profiles of proteinase in Gouda-type cheese.
        J. Dairy Sci. 1986; 69: 2018
        • Jenness R.
        Composition and characteristics of goat milk: Review 1968-1979.
        J. Dairy Sci. 1980; 63: 1605
        • Jin Y.K.
        • Park Y.W.
        Effects of aging time and temperature on proteolysis of commercial goat milk cheeses produced in the United States.
        J. Dairy Sci. 1995; 78: 2598-2608
        • Jin Y.K.
        • Park Y.W.
        SDS-PAGE of proteins in goat milk cheeses ripened under different conditions.
        J. Food Sci. 1996; 61: 490-494
        • Kolar C.W.
        • Mickle J.B.
        Relationship between milk fat acidity, short chain fatty acids and rancid flavor in milk.
        J. Dairy Sci. 1963; 46: 569
        • Koskiowski F.V.
        Paper chromatography of the free amino acids I American Cheddar cheese.
        J. Dairy Sci. 1951; 34: 228
        • Kosikowski F.V.
        Cheese and Fermented Milk Foods.
        2nd ed. Edwards Bros., Ann Arbor, MI1977 (437-440)
        • Kosikowski F.V.
        Requirements for the acceptance and marketing of goat milk cheese.
        Dairy Goat J. 1986; 64: 462
        • Kosikowski F.V.
        • Dahlberg A.C.
        Adaptation of tyrosine method in routine cheese analysis.
        J. Dairy Sci. 1950; 33: 438
        • Krishna G.A.
        • Prabhakar J.V.
        Effect of water activity on secondary products formation in autoxidizing methyl linoleate.
        J. Am. Oil Chem. Soc. 1992; 69: 178-183
        • Kuchroo C.N.
        • Fox P.F.
        Soluble nitrogen in Cheddar cheese: comparison of extraction procedures.
        Milchwissenschaft. 1982; 37: 331-335
        • Kuchroo C.N.
        • Fox P.F.
        Fractionation of the water soluble nitrogen from Cheddar cheese: chromatographic methods.
        Milchwissenschaft. 1983; 38: 76
        • Laleye L.C.
        • Simard R.E.
        • Lee B.H.
        • Holley R.A.
        • Giroux R.N.
        Involvement of heterofermentative lactobacilli in development of open texture in cheeses.
        J. Food Prot. 1987; 50: 1009-1012
        • Law B.A.
        Flavor development in cheeses.
        in: Davies F.L. Law B.A. Advances in the Microbiology and Biochemistry of Cheese and Fermented Milk. Elsevier Appl. Sci. Publ. Ltd., London England1984: 187
        • Law B.A.
        Proteolysis in relation to normal and accelerated cheese ripening.
        in: Cheese: Chemistry, Physics and Microbiology. Vol. 1. Elsevier Appl. Sci. Publ. Ltd., London, England1987: 365
        • Lawrence R.C.
        • Creamer L.K.
        • Gelles J.
        Texture development during cheese ripening.
        J. Dairy Sci. 1987; 70: 1748-1760
      2. Le Jaouen, J. C. 1985. Pages 45-120 in The Making of Farmstead Goat Cheeses. Cheesemaker.s J. P.O. Box 85, Ashfield, MA.

        • Ledford R.A.
        Raw milk and fluid milk products.
        in: Marth E.H. Steele J.L. Applied Dairy Microbiology. Marcel Dekker, Inc., New York, NY1998: 55-64
        • Loewenstein M.
        • Speck S.J.
        • Barnhart H.M.
        • Frank J.H.
        Research on goat milk products: A Review.
        J. Dairy Sci. 1980; 63: 1631-1648
        • Lowrie R.J.
        Influence of lactic streptococci on bitter flavor development in cheese.
        J. Dairy Sci. 1977; 60: 810
        • McGugan W.A.
        • Emmons D.B.
        • Larmond E.
        Influence of volatile and nonvolatile fractions on intensity of Cheddar cheese flavor.
        J. Dairy Sci. 1979; 62: 398
        • Neth K.R.
        • Ledford R.A.
        Growth response of Lactobacillus caseito the proteolysis products I cheese during ripening.
        J. Dairy Sci. 1973; 56: 710
        • Noomen A.
        Activity of proteolytic enzymes in simulated soft cheeses (Meschanger type). 1. Activity of milk protease.
        Neth. Milk Dairy J. 1978; 32: 26
        • O’Keeffe R.B.
        • Fox P.F.
        • Daly C.
        Contribution of rennet and starter proteases to proteolysis in Cheddar cheese.
        J. Dairy Res. 1976; 43: 97
        • Ordonez J.A.
        • Burgos J.
        Etude de la varite de fromage “Ulloa”. 1. Evolution de la flore micorbienne et des composants azotes au cours de la maturation.
        Lait. 1977; 57: 150
        • Park Y.W.
        Nutrient profiles of commercial goat milk cheeses manufactured in the United States.
        J. Dairy Sci. 1990; 73: 3059
        • Park Y.W.
        Relative buffering capacity of goat milk, cow milk, soybased infant formulas, and commercial nonprescription antiacid drugs.
        J. Dairy Sci. 1991; 74: 3326
        • Park Y.W.
        Hypo-allergenic and therapeutic significance of goat milk.
        Small Rumin. Res. 1994; 14: 151-159
        • Park Y.W.
        • Jin Y.K.
        Proteolytic patterns of Caciotta and Monterey Jack hard goat milk cheeses as evaluated by SDS-PAGE and densitometric analyses.
        Small Rumin. Res. 1998; 28: 263-272
        • Park Y.W.
        • Van Hekken D.L.
        • Tunick M.H.
        • Holsinger V.H.
        Rheological characteristics of young Monterey Jack goat milk cheese.
        in: Proc. VII Int’l Conf. on Goats, Tours, France. Vol. II2000: 601
        • Poznanski S.
        • Habaj B.
        • Rymaszewski J.
        • Rapczynski T.
        Influence of different starter cultures on the protein breakdown in Edam cheese.
        in: Proc. 17th Int. Dairy Congr., Munich, Germany1966: 555
        • Reiter B.
        • Sorkin Y.
        • Pickering A.
        • Hall A.J.
        Hydrolysis of fat and protein in small cheeses made under aseptic conditions.
        J. Dairy Res. 1969; 36: 65
        • Remeuf F.
        • Lenoir J.
        Relationship between the physico-chemical characteristics of goat's milk and its rennetability.
        Bull. Int. Dairy Fed. No. 1986; 202: 68-71
        • Reville W.J.
        • Fox P.F.
        Soluble protein in Cheddar cheese: a comparison of analytical methods.
        Ir. J. Food Sci. Technol. 1978; 2: 67
        • Richardson B.C.
        • Creamer L.K.
        Casein proteolysis and bitter peptides in Cheddar cheese.
        N.Z. J. Dairy Sci. Technol. 1973; 8: 46
        • Richardson G.H.
        Standard Methods for the Examination of Dairy Products.
        15th ed. Am. Publ. Health Assoc., Washington, DC1985 (327)
        • Salji J.P.
        • Kroger M.
        Proteolysis and lipolysis in ripening Cheddar cheese made with conventional bulk starter and with frozen concentrated direct-to-the-vat culture.
        J. Food Sci. 1981; 46: 1345
        • Samples D.R.
        • Richter R.L.
        • Dill C.W.
        Measuring proteolysis in Cheddar cheese slurries: comparison of Hull and trinitrobenzene sulfonic acid procedures.
        J. Dairy Sci. 1984; 67: 60
        • Sanders G.P.
        Cheese Varieties and Descriptions. USDA Agric.
        Handbook No. 54, Washington, DC1969
        • Scanlan R.A.
        • Sather L.A.
        • Day E.A.
        Contribution of three fatty acids to the flavor of rancid milk.
        J. Dairy Sci. 1965; 58: 1582
        • Shalabi S.I.
        • Fox P.F.
        Electrophoretic analysis of cheese: Comparison of methods.
        Ir. J. Food Sci. Technol. 1987; 11: 135
        • Shipe W.F.
        • Bassette R.
        • Deane D.D.
        • Dunkley W.L.
        • Hammond E.G.
        • Haper W.J.
        • Kleyn D.H.
        • Morgan M.E.
        • Nelson J.H.
        • Scanlan R.A.
        Off flavor of milk; Nomenclature, standard, and bibliography.
        J. Dairy Sci. 1978; 61: 855
        • Smith G.J.
        • Dunkley W.L.
        Pro-oxidant in spontaneous development of oxidized flavor in milk.
        J. Dairy Sci. 1962; 45: 170
        • Tarladgis B.G.
        • Watts B.M.
        • Younathan M.T.
        A distillation method for the determination of malonaldehyde in rancid foods.
        J. Am. Oil Chem. Soc. 1960; 37: 44
        • Thomas T.D.
        • Pearce K.N.
        Influence of salt on lactose fermentation and proteolysis in Cheddar cheese.
        N.Z. J. Dairy Sci. Technol. 1981; 16: 253
        • Thomas S.B.
        • Druce R.G.
        • Peters G.J.
        • Griffiths D.G.
        Incidence and significance of thermoduric bacteria in farm milk supplies: A reappraisal and review.
        J. Appl. Bacteriol. 1967; 30: 265-298
        • Trujillo A.J.
        • Royo C.
        • Ferragut V.
        • Guamis B.
        Ripening profiles of goat cheese produced from milk treated with high pressure.
        J. Food Sci. 1999; 64: 833-837
        • Vakaleris D.G.
        • Price W.V.
        A rapid spectrophotometric method for measuring cheese ripening.
        J. Dairy Sci. 1959; 42: 264
        • Van Hooydonk A.C.M.
        • Olieman C.
        A rapid sensitive high performance liquid chromatography method of following the action of chymosin in milk.
        Neth. Milk Dairy J. 1982; 36: 153
        • Visser S.
        • Slangen K.J.
        On the specificity of chymosin (rennin) in itsaction on bovine B-casein.
        Neth. Milk Dairy J. 1977; 31: 16
        • Visser S.
        • Slangen K.J.
        • Hup G.
        Some bitter peptides form rennet-treated casein. A method for their purification, utilizing chromatographic separation on silica gel.
        Neth. Milk Dairy J. 1975; 29: 319
        • Visser S.
        • Slangen K.J.
        • Hup G.
        • Stadhouders J.
        Bitter flavour in cheese. 3. Comparative gel-chromatographic analysis of hydrophobic peptide fractions from a cheese made with Streptococcus cremoris strain HP.
        Neth. Milk Dairy J. 1983; 37: 181
        • Wake R.G.
        Studies casein V. The action of rennin on casein.
        Aust. J. Biol. Sci. 1959; 12: 479
        • Waugh D.F.
        • von Hippel P.H.
        k-Casein and the stabilization of casein micelles.
        J. Am. Chem. Soc. 1956; 78: 4576
        • Woo A.H.
        • Lindsay R.C.
        Rapid method for quantitative analysis of individual free fatty acid in Cheddar cheese.
        J. Dairy Sci. 1982; 65: 1102-1109
        • Wong E.
        • Johnson C.B.
        • Nixon L.N.
        The contribution of 4-methyloctanoic (hircinoic) acid to mutton and goat meat flavour.
        N.Z. J. Agric. Res. 1975; 18: 261
        • Wong E.
        • Nixon L.N.
        • Johnson C.B.
        Volatile medium chain fatty acids and mutton flavor.
        J. Agric. Food Chem. 1975; 23: 495