Advertisement

Adaptations of Glucose and Long-Chain Fatty Acid Metabolism in Liver of Dairy Cows during the Periparturient Period

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Tremendous metabolic and endocrine adjustments must be made as dairy cows move from late gestation to early lactation. Requirements for glucose and metabolizable energy increase two- to threefold from 21 d before to 21 d after parturition. The liver must adapt quickly to provide the increased glucose needed to support high milk production, and to process the flood of nonesterified fatty acids taken up from extensive mobilization of adipose triglycerides. While the end results of these adaptations are well known, much less is known about the cellular and molecular mechanisms underpinning hepatic adaptation to lactation. Increases in metabolic activity per gram of liver tissue, not just increased liver mass, are responsible for increased metabolism. Compared with activities present at 21 d before parturition, the capacity of liver tissue isolated at 1 d postpartum to convert alanine (an important glucogenic amino acid) to glucose increases more on a percentage basis than does gluconeogenic capacity from propionate. Likewise, hepatic abundance of mRNA for pyruvate carboxylase increases around calving, whereas mRNA for phosphoenolpyruvate carboxykinase does not. These changes in gluconeogenic enzymes suggest that amino acids from body and feed protein may be critically important sources of glucose for peripartal cows. Hepatic tissue from cows 1 d postpartum has greater rates of palmitate esterification, total and peroxisomal beta-oxidation of palmitate, and activity of mitochondrial carnitine palmitoyltransferase than hepatic tissue from the same cows 21 d prepartum. Prepartal nutrition has been shown to modulate some of these metabolic adaptations in the liver. Effects of hormones and cytokines that mediate adaptive responses to environmental and infectious stressors (or the lack of “cow comfort”) have not been investigated. Techniques of modern biochemistry promise to further our understanding of the mechanisms of metabolic adaptation during the peripartal period, and to quantify the effects of nutrition and environment during pre- and postpartum periods on hepatic glucose and lipid metabolism.

      Key words

      References

        • Aiello R.J.
        • Armentano L.E.
        Gluconeogenesis in goat hepatocytes is affected by calcium, ammonia and other metabolites but not primarily through cytosolic redox state.
        Comp. Biochem. Physiol. 1987; 88B: 193-201
        • Aiello R.J.
        • Kenna T.M.
        • Herbein J.H.
        Hepatic gluconeogenesis and ketogenic interrelationships in the lactating cow.
        J. Dairy Sci. 1984; 67: 1707-1715
        • Armentano L.E.
        • Grummer R.R.
        • Berries S.J.
        • Skaar T.C.
        • Donkin S.S.
        Effects of energy balance on hepatic capacity for oleate and propionate metabolism and triglyceride secretion.
        J. Dairy Sci. 1991; 74: 132-139
        • Ashes J.R.
        • Fleck E.
        • Scott T.W.
        Dietary manipulation of membrane lipids and its implications for their role in the production of second messengers.
        in: Von Engelhardt W. Leonard-Marek S. Breves G. Giesecke D. Ruminant Physiology: Digestion, Metabolism, Growth and Reproduction. Ferdinand Enke Verlag, Stuttgart, Germany1995: 373-386
        • Baird G.D.
        • Heitzman R.J.
        Gluconeogenesis in the cow. The effects of a glucocorticoid on hepatic intermediary metabolism.
        Biochem. J. 1970; 116: 865-874
        • Baird G.D.
        • Van der Walt J.G.
        • Bergman E.N.
        Whole-body metabolism of glucose and lactate in productive sheep and cows.
        Br. J. Nutr. 1983; 50: 249-265
        • Bauchart D.
        • Gruffat D.
        • Durand D.
        Lipid absorption and hepatic metabolism in ruminants.
        Proc. Nutr. Soc. 1996; 55: 39-47
        • Bauman D.E.
        • Currie W.B.
        Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis.
        J. Dairy Sci. 1980; 63: 1514-1529
        • Bauman D.E.
        • Peel C.J.
        • Steinhour W.D.
        • Reynolds P.J.
        • Tyrrell H.F.
        • Brown A.C.G.
        • Haaland G.L.
        Effect of bovine somatotropin on metabolism of lactating dairy cows: Influence on rates of irreversible loss and oxidation of glucose and nonesterified fatty acids.
        J. Nutr. 1988; 118: 1031-1040
        • Bell A.W.
        Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation.
        J. Anim. Sci. 1995; 73: 2804-2819
        • Bell A.W.
        • Burhans W.S.
        • Overton T.R.
        Protein nutrition in late pregnancy, maternal protein reserves and lactation performance in dairy cows.
        Proc. Nutr. Soc. 2000; 59: 119-126
        • Bennink M.R.
        • Mellenberger R.W.
        • Frobish R.A.
        • Bauman D.E.
        Glucose oxidation and entry rate as affected by the initiation of lactation.
        J. Dairy Sci. 1972; 55 (Abstr.): 712
        • Bergman E.N.
        Splanchnic and peripheral uptake of amino acids in relation to the gut.
        Fed. Proc. 1986; 45: 2277-2282
        • Bergman E.N.
        • Heitmann R.N.
        Metabolism of amino acids by the gut, liver, kidneys, and peripheral tissues.
        Fed. Proc. 1978; 37: 1228-1232
        • Berry M.N.
        • Vlark D.G.
        • Grivell A.R.
        • Wallace P.G.
        The calorigenic nature of hepatic ketogenesis: an explanation for the stimulation of respiration induced by fatty acid substrates.
        Eur. J. Biochem. 1983; 131: 205-214
        • Bitman J.
        • Wood D.L.
        • Tyrrell H.F.
        • Bauman D.E.
        • Peel C.J.
        • Brown A.C.G.
        • Reynolds P.J.
        Blood and milk lipid responses induced by growth hormone administration in lactating cows.
        J. Dairy Sci. 1984; 67: 2873-2880
        • Bremmer D.R.
        • Berries S.J.
        • Grummer R.R.
        Differences in activity of hepatic microsomal triglyceride transfer protein among species.
        Comp. Biochem. Physiol. A. 1999; 124: 123-131
        • Bremmer D.R.
        • Bertics S.J.
        • Besong S.A.
        • Grummer R.R.
        Changes in hepatic microsomal triglyceride transfer protein and triglyceride in periparturient dairy cattle.
        J. Dairy Sci. 2000; 83: 2252-2260
        • Brindle N.P.J.
        • Zammit V.A.
        • Pogson C.I.
        Regulation of carnitine palmitoyltransferase activity by malonyl-CoA in mitochondria from sheep liver, a tissue with low capacity for fatty acid synthesis.
        Biochem. J. 1985; 232: 177-182
        • Brockman R.P.
        Role of insulin in regulating hepatic gluconeogenesis in sheep.
        Can. J. Physiol. Pharmacol. 1985; 63: 1460-1464
        • Brockman R.P.
        Effect of insulin on the utilization of propionate in gluconeogenesis in sheep.
        Br. J. Nutr. 1990; 64: 95-101
        • Brockman R.P.
        • Bergman E.N.
        Effect of glucagon on plasma alanine and glutamine metabolism and hepatic gluconeogenesis in sheep.
        Am. J. Physiol. 1975; 228: 1627-1633
        • Brockman R.P.
        • Bergman E.N.
        • Joo P.K.
        • Manns J.G.
        Effects of glucagon and insulin on net hepatic metabolism of glucose precursors in sheep.
        Am. J. Physiol. 1975; 229: 1344-1350
        • Brockman R.P.
        • Laarveld B.
        Effect of insulin on gluconeogenesis and the metabolism of lactate in sheep.
        Can. J. Physiol. Pharmacol. 1986; 64: 1055-1059
        • Cadorniga-Valino C.
        • Grummer R.R.
        • Armentano L.E.
        • Donkin S.S.
        • Bertics S.J.
        Effects of fatty acids and hormones on fatty acid metabolism and gluconeogenesis in bovine hepatocytes.
        J. Dairy Sci. 1997; 80: 646-656
        • Casse E.A.
        • Rulquin H.
        • Huntington G.B.
        Effect of mesenteric vein infusion of propionate on splanchnic metabolism in primiparous Holstein cows.
        J. Dairy Sci. 1994; 77: 3296-3303
        • Chow J.C.
        • Jesse B.W.
        Interactions between gluconeogenesis and fatty acid oxidation in isolated sheep hepatocytes.
        J. Dairy Sci. 1992; 75: 2142-2148
        • Danfaer A.
        • Tetens V.
        • Agergaard N.
        Review and an experimental study on the physiological and quantitative aspects of gluconeogenesis in lactating ruminants.
        Comp. Biochem. Physiol. 1995; 111B: 201-210
        • Dann H.M.
        • Douglas G.N.
        • Overton T.R.
        • Drackley J.K.
        Carnitine palmitoyltransferase activity in liver of periparturient dairy cows.
        J. Dairy Sci. 2000; 83 (Abstr): 251
        • Dann H.M.
        • Varga G.A.
        • Putnam D.E.
        Improving energy supply to late gestation and early postpartum dairy cows.
        J. Dairy Sci. 1999; 82: 1765-1778
        • Dax E.M.
        • Partilla J.S.
        • Pineyro M.A.
        • Gregerman R.I.
        Altered glucagon- and catecholamine hormone-sensitive adenylyl cyclase responsiveness in rat liver membranes induced by manipulation of dietary fatty acid intake.
        Endocrinology. 1990; 127: 2236-2240
        • de Boer G.
        • Trenkle A.
        • Young J.W.
        Secretion and clearance rates of glucagon in dairy cows.
        J. Dairy Sci. 1986; 69: 721-733
        • Desvergne B.
        • Wahli W.
        Peroxisome proliferator-activated receptors: nuclear control of metabolism.
        Endocrine Rev. 1999; 20: 649-688
        • Donkin S.S.
        Role of the endocrine pancreas in animal metabolism, growth and performance.
        in: Pierzynowski S.G. Zabielski R. Biology of the Pancreas in Growing Animals. Elsevier Science B. V, Amsterdam1999: 315-328
        • Donkin S.S.
        • Armentano L.E.
        Insulin and glucagon regulation of gluconeogenesis in preruminating and ruminating bovine.
        J. Anim. Sci. 1995; 73: 546-551
        • Donkin S.S.
        • Bertics S.J.
        • Armentano L.E.
        Chronic and transitional regulation of gluconeogenesis and glyconeogenesis by insulin and glucagon in neonatal calf hepatocytes.
        J. Anim. Sci. 1997; 75: 3082-3087
        • Douglas G.N.
        • Drackley J.K.
        • Overton T.R.
        • Bateman H.G.
        Lipid metabolism and production by Holstein cows fed control or high fat diets at restricted or ad libitum intakes during the dry period.
        J. Dairy Sci. 1998; 81 (Abstr.): 295
        • Drackley J.K.
        Biology of dairy cows during the transition period: the final frontier?.
        J. Dairy Sci. 1999; 82: 2259-2273
        • Drackley J.K.
        • Beitz D.C.
        • Richard M.J.
        • Young J.W.
        Metabolic changes in dairy cows with ketonemia in response to feed restriction and dietary 1,3-butanediol.
        J. Dairy Sci. 1992; 75: 1622-1634
        • Drackley J.K.
        • Beitz D.C.
        • Young J.W.
        Regulation of in vitro palmitate oxidation in liver from dairy cows during early lactation.
        J. Dairy Sci. 1991; 74: 1884-1892
        • Drackley J.K.
        • Beitz D.C.
        • Young J.W.
        Regulation of in vitro metabolism of palmitate by carnitine and propionate in liver from dairy cows.
        J. Dairy Sci. 1991; 74: 3014-3024
        • Emery R.S.
        • Liesman J.S.
        • Herdt T.H.
        Metabolism of long chain fatty acids by ruminant liver.
        J. Nutr. 1992; 122: 832-837
        • Faith R.E.
        • Plotnikoff N.P.
        • Murgo A.J.
        Cytokines, stress hormones, and immune function.
        in: Plotnikoff N.P. Faith R.E. Murgo A.J. Good R.A. Cytokines: Stress and Immunity. CRC Press, Boca Raton, FL1999 (Chapter 11)
        • Faulkner A.
        • Pollock H.T.
        Effects of glucagon and α- and β-agonists on glycogenolysis and gluconeogenesis in isolated ovine hepato-cytes.
        Biochim. Biophys. Acta. 1990; 1052: 229-234
        • Ganong W.F.
        Ganong W.F. Review of Medical Physiology. Lange Medical Publications, Los Altos, CA1988: 429-482
        • Goff J.P.
        • Horst R.L.
        Physiological changes at parturition and their relationship to metabolic disorders.
        J. Dairy Sci. 1997; 80: 1260-1268
        • Goff J.P.
        • Kehrli Jr., M.E.
        • Horst R.L.
        Periparturient hypocalcemia in cows: prevention using intramuscular parathyroid hormone.
        J. Dairy Sci. 1989; 72: 1182-1187
        • Graulet B.
        • Gruffat D.
        • Durand D.
        • Bauchart D.
        Fatty acid metabolism and very low density lipoprotein secretion in liver slices from rats and preruminant calves.
        J. Biochem. 1998; 124: 1212-1219
        • Greenfield R.B.
        • Cecava M.J.
        • Donkin S.S.
        Changes in mRNA expression for gluconeogenic enzymes in liver of dairy cattle during the transition to lactation.
        J. Dairy Sci. 2000; 83: 1228-1236
        • Gruffat D.
        • Durand D.
        • Chilliard Y.
        • Williams P.
        • Bauchart D.
        Hepatic gene expression of apolipoprotein B100 during early lactation in underfed, high producing dairy cows.
        J. Dairy Sci. 1997; 80: 657-666
        • Gruffat-Mouty D.
        • Graulet B.
        • Durand D.
        • Samson-Bouma M.E.
        • Bauchart D.
        Apolipoprotein B production and very low density lipoprotein secretion by calf liver slices.
        J. Biochem. 1999; 126: 188-193
        • Gram D.E.
        • Drackley J.K.
        • Younker R.S.
        • LaCount D.W.
        • Veen-Huizen J.J.
        Nutrition during the dry period and hepatic lipid metabolism of periparturient dairy cows.
        J. Dairy Sci. 1996; 79: 1850-1864
        • Gram D.E.
        • Hansen L.R.
        • Drackley J.K.
        Peroxisomal β-oxidation of fatty acids in bovine and rat liver.
        Comp. Biochem. Physiol. 1994; 109B: 281-292
        • Grammer R.R.
        Etiology of lipid-related metabolic disorders in periparturient dairy cows.
        J. Dairy Sci. 1993; 76: 3882-3896
        • Grammer R.R.
        Impact of changes in organic nutrient metabolism on feeding the transition dairy cow.
        J. Anim. Sci. 1995; 73: 2820-2833
        • Hegart F.G.
        Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase: a control enzyme in ketogenesis.
        Biochem. J. 1999; 338: 569-582
        • Heitmann R.N.
        • Dawes D.J.
        • Sensenig S.C.
        Hepatic ketogenesis and peripheral ketone body utilization in the ruminant.
        J. Nutr. 1987; 117: 1174-1180
        • Hippen A.R.
        • She P.
        • Young J.W.
        • Beitz D.C.
        • Lindberg G.L.
        • Richardson L.F.
        • Tucker R.W.
        Alleviation of fatty liver in dairy cows with 14-day intravenous infusions of glucagon.
        J. Dairy Sci. 1999; 82: 1139-1152
        • Hocquette J.F.
        • Bauchart D.
        Intestinal absorption, blood transport and hepatic and muscle metabolism of fatty acids in preruminant and ruminant animals.
        Reprod. Nutr. Dev. 1999; 39: 27-48
        • Horst R.L.
        • Goff J.P.
        • Reinhardt T.A.
        Calcium and vitamin D metabolism in the dairy cow.
        J. Dairy Sci. 1994; 77: 1936-1951
        • Horst R.L.
        • Goff J.P.
        • Reinhardt T.A.
        • Buxton D.R.
        Strategies for preventing milk fever in dairy cattle.
        J. Dairy Sci. 1997; 80: 1269-1280
        • Hotamisligil G.S.
        • Shargill N.S.
        • Spiegelman B.M.
        Adipose expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance.
        Science. 1993; 259: 87-91
        • Huntington G.B.
        Energy metabolism in the digestive tract and liver of cattle: influence of physiological state and nutrition.
        Reprod. Nutr. Dev. 1990; 30: 35-47
        • Huntington G.B.
        • Eisemann J.H.
        • Whitt J.M.
        Portal blood flow in beef steers: comparison of techniques and relation to hepatic blood flow, cardiac output and oxygen uptake.
        J. Anim. Sci. 1990; 68: 1666-1673
        • Ingvartsen K.L.
        • Andersen J.B.
        Integration of metabolism and intake regulation: a review focusing on periparturient animals.
        J. Dairy Sci. 2000; 83: 1573-1597
        • Jesse B.W.
        • Emery R.S.
        • Thomas J.W.
        Control of bovine hepatic fatty acid oxidation.
        J. Dairy Sci. 1986; 69: 2290-2297
        • Johnson R.W.
        • Arkins S.
        • Dantzer R.
        • Kelley K.W.
        Hormones, lymphohemopoietic cytokines and the neuroimmune axis.
        Comp. Biochem. Physiol. 1997; 116A: 183-201
        • Judson G.J.
        • Leng R.A.
        Studies on the control of gluconeogenesis in sheep: Effect of propionate, casein, and butyrate infusions.
        Br. J. Nutr. 1973; 29: 175-195
        • Kleppe B.B.
        • Aiello R.J.
        • Grammer R.R.
        • Armentano L.E.
        Triglyceride accumulation and very low density lipoprotein secretion by rat and goat hepatocytes in vitro.
        J. Dairy Sci. 1988; 71: 1813-1822
        • Knapp J.R.
        • Baldwin Jr, R.L.
        Regulation of ketogenesis in dairy cattle.
        J. Anim. Sci. 1990; 68 (Abstr): 522
        • Knapp J.R.
        • Freetly H.C.
        • Reis B.L.
        • Calvert C.C.
        • Baldwin R.L.
        Effects of somatotropin and substrates on patterns of liver metabolism in lactating dairy cattle.
        J. Dairy Sci. 1992; 75: 1025-1035
        • Koundakjian P.P.
        • Snoswell A.M.
        Ketone body and fatty acid metabolism in sheep tissues. 3-Hydroxybutyrate dehydrogenase, a cytoplasmic enzyme in sheep liver and kidney.
        Biochem. J. 1970; 119: 49-57
        • Krebs H.A.
        Bovine ketosis.
        Vet. Rec. 1966; 78: 187-192
        • Krehbiel C.R.
        • Harmon D.L.
        • Schnieder J.E.
        Effects of increasing raminal butyrate on portal and hepatic nutrient flux in steers.
        J. Anim. Sci. 1992; 70: 904-914
        • Kroetz D.L.
        • Yook P.
        • Costet P.
        • Bianchi P.
        • Pineau T.
        Peroxisome proliferator-activated receptor a controls the hepatic CYP4A induction activated response to starvation and diabetes.
        J. Biol. Chem. 1998; 273: 31581-31589
        • Kunz P.L.
        • Blum J.W.
        • Hart I.C.
        • Bickel H.
        • Landis J.
        Effects of different energy intakes before and after calving on food intake, performance and blood hormones and metabolites in dairy cows.
        Anim. Prod. 1985; 40: 219-231
        • Lehner R.
        • Cui Z.
        • Vance D.E.
        Subcellular localization, developmental expression and characterization of a liver triacylglycerol hydrolase.
        Biochem. J. 1999; 338: 761-768
        • Lemberger T.
        • Saladin R.
        • Vázquez M.
        • Assimacopoulos F.
        • Staels B.
        • Desvergne B.
        • Wahli W.
        • Auwerx J.
        Expression of the peroxisome proliferator-activated receptor α gene is stimulated by stress and follows a diurnal rhythm.
        J. Biol. Chem. 1996; 271: 1764-1769
        • Liesman J.S.
        • McNamara J.P.
        • Capuco A.V.
        • Binelli M.
        • Vanderkooi W.K.
        • Emery R.S.
        • Tucker H.A.
        • Moseley W.M.
        Comparison of growth hormone-releasing factor and somatotropin: lipid and glucose metabolism in dairy cows.
        J. Dairy Sci. 1995; 78: 2159-2166
        • Lindsay D.B.
        • Williams R.L.
        The effect on glucose entry rate of abomasal protein infusion in sheep.
        Proc. Nutr. Soc. 1971; 30 (Abstr): 35A
        • Lomax M.A.
        • Donaldson I.A.
        • Pogson C.J.
        The effect of fatty acids and starvation on the metabolism of gluconeogenic precursors by isolated sheep liver cells.
        Biochem. J. 1986; 240: 277-280
        • Mallard B.A.
        • Dekkers J.C.
        • Ireland M.J.
        • Leslie K.E.
        • Sharif S.
        • Lacey Vankampen C.
        • Wagter L.
        • Wilkie B.N.
        Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health.
        J. Dairy Sci. 1998; 81: 585-595
        • Marcos E.
        • Mazur A.
        • Cardot P.
        • Rayssiguier Y.
        Serum apolipoproteins B and A-I and naturally occurring fatty liver in dairy cows.
        Lipids. 1990; 25: 575-577
        • Mayes P.A.
        The citiric acid cycle: the catabolism of acetyl-CoA.
        in: Murray R.K. Granner D.K. Mayes P.A. Rodwell V.W. Harper's Biochemistry. 24th ed. Appleton & Lange, Stamford, CT1996: 168-175
        • McNamara J.P.
        Regulation of adipose tissue metabolism in support of lactation.
        J. Dairy Sci. 1991; 74: 706-719
        • Mills S.E.
        • Beitz D.C.
        • Young J.W.
        Evidence for impaired metabolism in liver during induced lactation ketosis of dairy cows.
        J. Dairy Sci. 1986; 69: 362-370
        • Minor D.J.
        • Trower S.L.
        • Strang B.D.
        • Shaver R.D.
        • Grummer R.R.
        Effects of nonfiber carbohydrate and niacin on periparturient metabolic status and lactation of dairy cows.
        J. Dairy Sci. 1998; 81: 189-200
        • Moberg G.P.
        Biological response to stress: key to assessment of animal well-being?.
        in: Moberg G.P. Chapter 3 Animal Stress. Am. Physiol. Soc., Bethesda, MD1985
        • National Research Council
        Nutrient Requirements of Dairy Cattle.
        6th ed. Natl. Acad. Sci., Washington, DC1989
        • Neveu P.J.
        Behaviour, stress and immune function.
        in: Buckingham J.C. Gillies G.E. Cowell A.M. Stress, Stress Hormones and the Immune System. John Wiley & Sons Ltd., Chichester, England1997 (Chapter 18)
        • Nocek J.E.
        Bovine acidosis: implications on laminitis.
        J. Dairy Sci. 1997; 80: 1005-1028
        • Overton T.R.
        Substrate utilization for hepatic gluconeogenesis in the transition dairy cow.
        in: Proc. Cornell Nutr. Conf. for Feed Manufacturers, Cornell Univ, Ithaca, NY1998 (237-246)
        • Overton T.R.
        • Drackley J.K.
        • Douglas G.N.
        • Emmert L.S.
        • Clark J.H.
        Hepatic gluconeogenesis and whole-body protein metabolism of periparturient dairy cows as affected by source of energy and intake of the prepartum diet.
        J. Dairy Sci. 1998; 81 (Abstr.): 295
        • Overton T.R.
        • Drackley J.K.
        • Ottemann-Abbamonte C.J.
        • Beaulieu A.D.
        • Emmert L.S.
        • Clark J.H.
        Substrate utilization for hepatic gluconeogenesis is altered by increased glucose demand in ruminants.
        J. Anim. Sci. 1999; 77: 1940-1951
        • Patel O.V.
        • Takahashi T.
        • Takenouchi N.
        • Hirako M.
        • Sasaki N.
        • Domeki I.
        Peripheral cortisol levels throughout gestation in the cow: Effect of stage of gestation and foetal number.
        Br. Vet. J. 1996; 152: 425-432
        • Peck M.D.
        Interaction of lipids with immune function I: Biochemical effects of dietary lipids on plasma membranes.
        J. Nutr. Biochem. 1994; 5: 466-478
        • Piot C.
        • Veerkamp J.H.
        • Bauchart D.
        • Hocquette J.F.
        Contribution of mitochondria and peroxisomes to palmitate oxidation in rat and bovine tissues.
        Comp. Biochem. Physiol. B. 1998; 121: 185-194
        • Pocius P.A.
        • Herbein J.H.
        Effects of in vivo administration of growth hormone on milk production and in vitro hepatic metabolism in dairy cattle.
        J. Dairy Sci. 1986; 69: 713-720
        • Power G.W.
        • Yaqoob P.
        • Harvey D.J.
        • Newsholme E.A.
        • Calder P.C.
        The effict of dietary lipid manipulation on hepatic mitochondrial phospholipid fatty acid composition and carnitine palmitoyltransferase I activity.
        Biochem. Mol. Biol. Int. 1994; 34: 671-684
        • Pullen D.L.
        • Palmquist D.L.
        • Emery R.S.
        Effect on days of lactation and methionine hydroxy analog on incorporation of plasma fatty acids into plasma triglycerides.
        J. Dairy Sci. 1989; 72: 49-58
        • Reilly P.E.B.
        • Black A.L.
        Early effects of cortisol on glucose and alanine metabolism in adrenalectomized sheep.
        Am. J. Physiol. 1973; 225: 689-695
        • Reilly P.E.B.
        • Ford E.J.H.
        The effects of different dietary contents of protein on amino acid and glucose production and on the contribution of amino acids to gluconeogenesis in sheep.
        Br. J. Nutr. 1971; 26: 249-263
        • Reynolds C.K.
        • Aikman P.C.
        • Humphries D.J.
        • Beever D.E.
        Splanchnic metabolism in transition dairy cows.
        J. Dairy Sci. 2000; 83 (Abstr.): 257
        • Reynolds C.K.
        • Durst B.
        • Humphries D.J.
        • Lupoli B.
        • Jones A.K.
        • Phipps R.H.
        • Beever D.E.
        Visceral tissue mass in transition dairy cows.
        J. Dairy Sci. 2000; 83 (Abstr.): 257
        • Reynolds C.K.
        • Huntington G.B.
        • Tyrrell H.F.
        • Reynolds P.J.
        Net metabolism of volatile fatty acids, D-β-hydroxybutyrate, nonesterified fatty acids, and blood gases by portal-drained viscera and liver of lactating Holstein cows.
        J. Dairy Sci. 1988; 71: 2395-2405
        • Ricquier D.
        • Bouillaud F.
        The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP.
        Biochem. J. 2000; 345: 161-179
        • Roberts C.J.
        • Reid I.M.
        • Rowlands G.J.
        • Patterson A.
        A fat mobilisation syndrome in dairy cows in early lactation.
        Vet. Rec. 1981; 108: 7-9
        • Rukkwamsuk T.
        • Kruip T.A.M.
        • Meijer G.A.L.
        • Wensing T.
        Hepatic fatty acid composition in periparturient cows with fatty liver induced by intake of a high energy diet during the dry period.
        J. Dairy Sci. 1999; 82: 280-287
        • Rukkwamsuk T.
        • Kruip T.A.M.
        • Wensing T.
        Relationship between overfeeding and overconditioning in the dry period and the problems of high producing dairy cows during the postparturient period.
        Vet. Q. 1999; 21: 71-77
        • Rukkwamsuk T.
        • Wensing T.
        • Geelen M.J.H.
        Effect of fatty liver on hepatic gluconeogenesis in periparturient dairy cows.
        J. Dairy Sci. 1999; 82: 500-505
        • Seal C.J.
        • Reynolds C.K.
        Nutritional implications of gastrointestinal and liver metabolism in ruminants.
        Nutr. Res. Rev. 1993; 6: 185-208
        • Seifter S.
        • Englard S.
        Energy metabolism.
        in: Arias I.M. Boyer J.L. Fausto N. Jakoby W.B. Schachter D.A. Shafritz D.A. The Liver: Biology and Pathobiology. 3rd ed. Raven Press, Ltd., New York1994: 323-364
        • She P.
        • Lindberg G.L.
        • Hippen A.R.
        • Beitz D.C.
        • Young J.W.
        Regulation of messenger ribonucleic acid expression for gluconeogenic enzymes during glucagon infusions into lactating cows.
        J. Dairy Sci. 1999; 82: 1153-1163
        • Simmons C.R.
        • Bergen W.G.
        • VandeHaar M.J.
        • Sprecher D.J.
        • Sniffen C.J.
        • Stanisiewski E.P.
        • Tucker H.A.
        Protein and fat metabolism in cows given somavubove before parturition.
        J. Dairy Sci. 1994; 77: 1835-1847
        • Smith T.R.
        • Hippen A.R.
        • Beitz D.C.
        • Young J.W.
        Metabolic characteristics of induced ketosis in normal and obese dairy cows.
        J. Dairy Sci. 1997; 80: 1569-1581
        • Strang B.D.
        • Bertics S.J.
        • Grummer R.R.
        • Armentano L.E.
        Effect of long-chain fatty acids on triglyceride accumulation, gluconeogenesis, and ureagenesis in bovine hepatocytes.
        J. Dairy Sci. 1998; 81: 728-739
        • Steinhour W.D.
        • Bauman D.E.
        Propionate metabolism: a new interpretation.
        in: Dobson A. Dobson M.J. Aspects of Digestive Physiology in Ruminants. Cornell Univ. Press, Ithaca, NY1988: 238
        • Van Den Top A.M.
        • Geelen M.J.H.
        • Wensing T.
        • Wentink G.H.
        • Van’t Klooster A.T.
        • Beynen A.C.
        Higher postpartum hepatic triacylglyc-erol concentrations in dairy cows with free rather than restricted access to feed during the dry period are associated with lower activities of hepatic glycerolphosphate acyltransferase.
        J. Nutr. 1996; 126: 76-85
        • Van Den Top A.M.
        • Wensing T.
        • Geelen M.J.H.
        • Wentink G.H.
        • Van’t Klooster A.T.
        • Beynen A.C.
        Time trends of plasma lipids and enzymes synthesizing hepatic triacylglycerol during postpartum development of fatty liver in dairy cows.
        J. Dairy Sci. 1995; 78: 2208-2220
        • VandeHaar M.J.
        • Yousif G.
        • Sharma B.K.
        • Herdt T.H.
        • Emery R.S.
        • Allen M.S.
        • Liesman J.S.
        Effect of energy and protein density of prepartum diets on fat and protein metabolism of dairy cattle in the periparturient period.
        J. Dairy Sci. 1999; 82: 1282-1295
        • Vazquez-Añon M.
        • Bertics S.
        • Luck M.
        • Grummer R.R.
        • Pinheiro J.
        Peripartum liver triglyceride and plasma metabolites in dairy cows.
        J. Dairy Sci. 1994; 77: 1521-1528
        • Veenhuizen J.J.
        • Russell R.W.
        • Young J.W.
        Kinetics of metabolism of glucose, propionate, and CO2 in steers as affected by injecting phlorizin and feeding propionate.
        J. Nutr. 1988; 116: 839-850
        • Wolff J.E.
        • Bergman E.N.
        • Williams H.H.
        Net metabolism of plasma amino acids by liver and portal-drained viscera of fed sheep.
        Am. J. Physiol. 1972; 223: 438-446
        • Zammit V.A.
        Ketogenesis in the liver of ruminants—adaptations to a challenge.
        J. Agric. Sci. (Camb.). 1990; 115: 155-162
        • Zammit V.A.
        Role of insulin in hepatic fatty acid partitioning: emerging concepts.
        Biochem. J. 1996; 314: 1-14
        • Zammit V.A.
        Carnitine acyltransferases: functional signficance of sucellular distribution and membrane topology.
        Prog. Lipid Res. 1999; 38: 199-224
        • Zammit V.A.
        The malonyl-CoA-long-chain acyl-CoA axis in the maintenance of mammalian cell function.
        Biochem. J. 1999; 343: 505-515
        • Zhu L.H.
        • Armentano L.E.
        • Bremmer D.R.
        • Grummer R.R.
        • Bertics S.J.
        Plasma concentration of urea, ammonia, glutamine around calving, and the relation of hepatic triglyceride, to plasma ammonia removal and blood acid-base balance.
        J. Dairy Sci. 2000; 83: 734-740