Advertisement

Invited Review: The Scientific Basis of Lactobacillus acidophilus NCFM Functionality as a Probiotic

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Lactobacillus acidophilus NCFM is a probiotic strain available in conventional foods (milk, yogurt, and toddler formula) and dietary supplements. Its commercial availability in the United States since the mid-1970s is predicated on its safety, its amenability to commercial manipulation, and its biochemical and physiological attributes presumed to be important to human probiotic functionality. The strain has been characterized in vitro, in animal studies, and in humans. NCFM is the progenitor of the strain being used for complete chromosome sequencing and therefore will be a cornerstone strain for understanding the relationship between genetics and probiotic functionality. Both phenotypic and genotypic techniques have verified its taxonomic status as a type A1 L. acidophilus strain. It adheres to Caco-2 and mucus-secreting HT-29 cell culture systems, produces antimicrobial compounds, and is amenable to genetic manipulation and directed DNA introduction. NCFM survives gastrointestinal tract transit in both healthy and diseased populations. NCFM inhibits aberrant crypt formation in mutagenized rats, indicative of activity that could decrease the risk of colon cancer. A blend of probiotic strains containing NCFM decreased the incidence of pediatric diarrhea. NCFM led to a significant decrease in levels of toxic amines in the blood of dialysis patients with small bowel bacterial over-growth. At adequate daily feeding levels, NCFM may facilitate lactose digestion in lactose-intolerant subjects. Further validation of the probiotic properties of NCFM in humans and clarification of its mechanisms of probiotic action are needed to better understand the role this strain might play in promoting human health.

      Key words

      Abbreviation key:

      GI (gastrointestinal), NCSU (North Carolina State University)

      References

        • Adlerberth I.
        • Ahrne S.
        • Johansson M.L.
        • Molin G.
        • Hanson L.A.
        • Wold A.E.
        A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29.
        Appl. Environ. Microbiol. 1996; 62: 2244-2251
        • Alander M.
        • Satokari R.
        • Korpela R.
        • Saxelin M.
        • Vilpponen-Salmela T.
        • Mattila-Sandholm T.
        • von Wright A.
        Persistence of colonization of human colonic mucosa by a probiotic strain. Lactobacillus rhamnosus GG, after oral consumption.
        Appl. Environ. Microbiol. 1999; 65: 351-354
        • Barefoot S.F.
        • Klaenhammer T.R.
        Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus.
        Appl. Environ. Microbiol. 1983; 45: 1808-1815
        • Barefoot S.F.
        • Nettles C.G.
        • Chen Y.R.
        Lactacin B, a bacteriocin produced by Lactobacillus acidophilus.
        in: DeVuyst L. Vandamme E.J. Bacteriocins and Lactic Acid Bacteria. Chapman and Hall, London1994: 353-376
        • Barefoot S.F.
        • Klaenhammer T.R.
        Purification and characterization of the Lactobacillus acidophilus bacteriocin lactacin B.
        Antimicrob. Agents Chemother. 1984; 26: 328-334
        • Bouhnik T.
        • Pochart P.
        • Marteau P.
        • Arlet G.
        • Goderel I.
        • Rambaud J.C.
        Fecal recovery in humans of viable Bifidobacterium sp ingested in fermented milk.
        Gastroenterology. 1992; 102: 875-878
        • Cano R.
        • Willoughby V.
        Sequencing the genome of Lactobacillus acidophilus.
        J. Dairy Sci. 1999; 82 (Abstr.): 6
        • Chauviere G.
        • Coconnier M.H.
        • Kerneis S.
        • Fourniat J.
        • Servin A.L.
        Adhesion of human Lactobacillus acidophilus strain LB to human enterocyte-like Caco-2 cells.
        J. Gen. Microbiol. 1992; 138: 1689-1696
        • Coconnier M.-H.
        • Klaenhammer T.R.
        • Kerneis S.
        • Bernet M.-F.
        • Servin A.L.
        Protein-mediated adhesion of Lactobacillus acidophilus BG2FO4 on human enterocyte and mucus-secreting cell lines in culture.
        Appl. Environ. Microbiol. 1992; 58: 2034-2039
        • Conway P.L.
        • Gorbach S.L.
        • Goldin B.R.
        Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells.
        J. Dairy Sci. 1987; 70: 1-12
      1. Crowell, D. C. 1998. Microbial analysis of human intestinal flora after feeding Lactobacillus acidophilus. M.S. Thesis, North Carolina State Univ., Raleigh.

        • De Vuyst L.
        • Vandamme E.J.
        Antimicrobial potential of lactic acid bacteria.
        in: De Vuyst L. Vandamme E.J. Bacteriocins of Lactic Acid Bacteria. Blackie Academic and Professional, Glasgow, UK1994: 91-142
        • Dunn S.R.
        • Simenhoff M.L.
        • Ahmed K.E.
        • Gaughan W.J.
        • Eltayeb B.O.
        • Fitzpatrick M.-E.D.
        • Emery S.M.
        • Ayres J.W.
        • Holt K.E.
        Effect of oral administration of freeze-dried Lactobacillus acidophilus on small bowel bacterial overgrowth in patients with end stage kidney disease: reducing uremic toxins and improving nutrition.
        Int. Dairy J. 1998; 8: 545-553
        • Dunn S.R.
        • Simenhoff M.L.
        • Fitzpatrick M.E.
        • Eltayeb B.
        • Ahmed K.
        • Emery S.
        • Wrigley M.
        • Chow J.M.
        • Ataya D.
        • Gaughan W.J.
        Effects of orally administered L. acidophilus in reducing an endogenous uremic toxin (dimethylamine) and a carcinogen (nitrosodimethlamine) and improving nutritional status in a placebo controlled, double blind, parallel study in 24 hemodialysis patients.
        J. Am. Soc. Nephrol. 1998; 9: 146-A
        • Gilliland S.E.
        • Walker D.K.
        Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans.
        J. Dairy Sci. 1990; 73: 905-911
        • Gilliland S.E.
        • Speck M.L.
        Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures.
        J. Food Prot. 1977; 40: 820-823
        • Gilliland S.E.
        • Speck M.L.
        Use of the Minitek system for characterizing lactobacilli.
        Appl. Environ. Microbiol. 1977; 33: 1289-1292
        • Gilliland S.E.
        • Nelson C.R.
        • Maxwell C.
        Assimilation of cholesterol by Lactobacillus acidophilus.
        Appl. Environ. Microbiol. 1985; 49: 377-381
        • Gilliland S.E.
        • Speck M.L.
        • Morgan C.G.
        Detection of L. acidophilus in feces of humans, pigs, and chickens.
        Appl. Microbiol. 1975; 30: 541-545
        • Gilliland S.W.
        • Speck M.L.
        • Nauyok Jr, C.F.
        • Giesbrecht F.G.
        Influence of consuming nonfermented milk containing Lactobacillus acidophilus on fecal flora of health males.
        J. Dairy Sci. 1978; 61: 1-10
        • Girgis H.S.
        • Cano R.J.
        • Klaenhammer T.R.
        Tolerance to hydrogen and expression of glutathione reductase in Lactobacillus.
        IFT Annual Meeting Book of Abstracts. Institute of Food Technologists, Chicago, IL2000 (Page 183)
        • Goldin B.R.
        • Gorbach S.L.
        Effect of Lactobacillus acidophilus dietary supplements on 1,2-dimethylhydrazine dihydrochloride-induced intestinal cancer in rats.
        J. Natl. Cancer Inst. 1980; 64: 263-265
        • Goldin B.R.
        • Gorbach S.L.
        Alterations of the intestinal microflora by diet, oral antibiotics, and Lactobacillus: decreased production of free amines from aromatic nitro compounds, azo dyes, and glucuronides.
        J. Natl. Cancer Inst. 1984; 73: 689-695
        • Goldin B.R.
        • Gorbach S.L.
        The effect of milk and lactobacillus feeding on human intestinal bacterial enzyme activity.
        Am. J. Clin. Nutr. 1984; 39: 756-761
        • Goldin B.R.
        • Gorbach S.L.
        The effect of oral administration of Lactobacillus and antibiotics on intestinal bacterial activity and chemical induction of large bowel tumors.
        Dev. Ind. Microbiol. 1984; 25: 139-150
        • Goldin B.R.
        • Swenson L.
        • Dwyer J.
        • Sexton M.
        • Gorbach S.
        Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes.
        J. Natl. Cancer Inst. 1980; 64: 255-261
        • Greene J.D.
        • Klaenhammer T.R.
        Factors involved in adherence of lactobacilli to human Caco-2 cells.
        Appl. Environ. Microbiol. 1994; 60: 4487-4494
        • Guerrero M.
        • Dohnalek M.
        • Newton P.
        • Kuznetsova O.
        • Murphy T.
        • Calva J.
        • Hilty M.
        • Costigan T.
        • Ruiz-Palacios G.
        Effect of probiotic-containing beverages on incidence of diarrhea.
        in: Abstracts of the 1st World Congress of Pediatric Infectious Diseases, 15th InterAmerican Congress of Pediatric Infectious Diseases, Acapulco, Mexico1996 (Abstr. # 610:45-2)
        • Hood S.K.
        • Zottola E.A.
        Electron microscopic study of the adherence properties of Lactobacillus acidophilus.
        J. Food Sci. 1987; 52: 791-805
        • Hughes D.B.
        • Hoover D.G.
        Viability and enzymatic activity of bifidobacteria in milk.
        J. Dairy Sci. 1995; 78: 268-276
        • Iturriria-Laverty K.
        • Tong P.S.
        • Sanders M.E.
        Microbiological stability of probiotic and starter bacteria in commercial yogurt and cottage cheese.
        J. Dairy Sci. 1999; 82 (Abstr.): 6
      2. Kaplan, C. W., J. D. Astaire, M. E. Sanders, B. S. Reddy and C. L. Kitts. 16S rDNA terminal restriction fragment pattern analysis of bacterial communities in rat feces during ingestion of Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. In press.

        • Kim G.S.
        • Gilliland S.E.
        Lactobacillus acidophilus as a dietary adjunct for milk to aid lactose digestion in humans.
        J. Dairy Sci. 1983; 66: 959-966
        • Klaenhammer T.R.
        • Kleeman E.G.
        Growth characteristics, bile sensitivity, and freeze damage in colonial variants of Lactobacillus acidophilus.
        Appl. Environ. Microbiol. 1981; 41: 1461-1467
      3. Klaenhammer, T. R., and W. M. Russell. 1999. Lactobacillus acidophilus. Pages 1151–1157 in Encyclopedia of Food Microbiology. Volume 2, R. K. Robinson, C. Batt, C., and P. D. Patel, ed. Academic Press, San Diego, CA.

        • Klaehammer T.R.
        • Fremaux C.
        • Ahn C.
        • Milton K.
        Molecular biology of bacteriocins produced by Lactobacillus.
        in: Hoover D. Steenson L. Bacteriocins and Lactic Acid Bacteria. Academic Press, New York1992: 151-180
        • Klaenhammer T.R.
        Functional activities of Lactobacillus probiotics: genetic mandate.
        Int. Dairy J. 1998; 8: 497-505
        • Kleeman E.G.
        • Klaenhammer T.R.
        Adherence of Lactobacillus species to human fetal intestinal cells.
        J. Dairy Sci. 1982; 65: 2063-2069
        • Klein G.
        • Pack A.
        • Bonaparte C.
        • Reuter G.
        Taxonomy and physiology of probiotic lactic acid bacteria.
        Int. J. Food Microbiol. 1998; 41: 103-125
        • Kullen M.
        • Klaenhammer T.R.
        Identification of the pHinducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization.
        Mol. Microbiol. 1999; 33: 1152-1161
        • Kullen M.J.
        • Sanozky-Dawes R.B.
        • Crowell D.C.
        • Klaenhammer T.R.
        Use of DNA sequence of variable regions of the 16SrRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex.
        J. Appl. Microbiol. 2000; 88: 1-7
        • Lin M.-Y.
        • Savaiano D.
        • Harlander S.
        Influence of nonfermented dairy products containing bacterial starter cultures on lactose maldigestion in humans.
        J. Dairy Sci. 1991; 74: 87-95
        • Lin M.-Y.
        • Yen C.-L.
        • Chen S.-H.
        Management of lactose maldigestion by consuming milk containing lactobacilli.
        Dig. Dis. Sci. 1998; 43: 133-137
        • Luchansky J.B.
        • Kleeman E.G.
        • Raya R.R.
        • Klaenhammer T.R.
        Genetic transfer systems for delivery of plasmid DNA to Lactobacillus acidophilus ADH: conjugation, electroporation, and transduction.
        J. Dairy Sci. 1989; 72: 1408-1417
        • Luchansky J.B.
        • Christine Tennant M.
        • Klaenhammer T.R.
        Molecular cloning and deoxyribonucleic acid polymorphisms in Lactobacillus acidophilus and Lactobacillus gasseri.
        J. Dairy Sci. 1991; 74: 3293-3302
        • Mack D.R.
        • Michail S.
        • Wei S.
        • McDougall L.
        • Hollingsworth M.A.
        Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression.
        Am. J. Physiol. 1999; 276: G941-G950
        • McDonough F.E.
        • Hitchins A.D.
        • Wong N.P.
        • Wells P.
        • Bodwell C.E.
        Modification of sweet acidophilus milk to improve utilization by lactose-intolerant persons.
        Am. J. Clin. Nutr. 1987; 45: 570-574
        • Montes R.G.
        • Bayless T.M.
        • Saavedra J.M.
        • Perman J.A.
        Effect of milks inoculated with Lactobacillus acidophilus or a yogurt starter culture in lactose-maldigesting children.
        J. Dairy Sci. 1995; 78: 1657-1664
        • Mustapha A.
        • Jiang T.
        • Savaiano D.
        Improvement of lactose digestion by humans following ingestion of unfermented acidophilus milk: influence of bile sensitivity, lactose transport, and acid tolerance of Lactobacillus acidophilus.
        J. Dairy Sci. 1997; 80: 1537-1545
      4. Nettles, C. G. 1992. Purification and amino acid composition of the Lactobacillus acidophilus bacteriocin, lactacin B. Ph.D. dissertation. Clemson University, Clemson, SC.

        • Newcomer A.D.
        • Park H.S.
        • O’Brien P.C.
        • McGill D.B.
        Response of patients with irritable bowel syndrome and lactase deficiency using unfermented acidophilus milk.
        Am. J. Clin. Nutr. 1983; 38: 257-263
        • Nielsen J.W.
        • Gilliland S.E.
        The lactose hydrolyzing enzyme from Lactobacillus acidophilus.
        Cult. Dairy Prod. J. 1992; 27: 20-28
        • Payne D.L.
        • Welsh J.D.
        • Manion C.V.
        • Tsegaye A.
        • Herd L.D.
        Effectiveness of milk products in dietary management of lactose malabsorption.
        Am J. Clin. Nutr. 1981; 34: 2711-2715
        • Pick E.
        Microassays for superoxide and hydrogen peroxide production and nitroblue tetrazolium reduction using an enzyme immunoassay microplate reader.
        Methods Enzymol. 1986; 132: 407-421
        • Pot B.
        • Hertel C.
        • Ludwig W.
        • Descheemaeker P.
        • Kerstens K.
        • Schleifer K.H.
        Identification and classification of Lactobacillus acidophilus, L. gasseri, and L. johnsonii strains by SDSPAGE and rRNA-targeted oligonucleotide probe hybridization.
        J. Gen. Microbiol. 1993; 139: 513-517
        • Rao C.V.
        • Sanders M.E.
        • Indranie C.
        • Simi B.
        • Reddy B.S.
        Prevention of indices of colon carcinogenesis by the probiotic Lactobacillus acidophilus NCFM® in rats.
        Int. J. Oncol. 1999; 14: 939-944
        • Rao D.R.
        • Alabi S.O.
        • Chawan C.B.
        Temporal changes of lactase activity in the gastrointestinal tract of rats fed yogurt and sweet acidophilus milk.
        Milchwissenschaft. 1991; 46: 219-222
        • Reid G.
        In vitro analysis of a dairy strain of Lactobacillus acidophilus NCFM™ as a possible probiotic for the urogenital tract.
        Int. Dairy J. 2000; 10: 415-419
        • Ruiz-Palacios G.
        • Tuz F.
        • Arteaga F.
        • Guerrero M.L.
        • Dohnalek M.
        • Hilty M.
        Tolerance and fecal colonization with Lactobacillus reuteri in children fed a beverage with a mixture of Lactobacillus spp.
        Pediatr. Res. 1996; 39 (Abstr.): 104
        • Ruiz-Palacios G.
        • Guerrero M.L.
        • Hilty M.
        • Dohnalek M.
        • Newton P.
        • Calva J.J.
        • Costigan T.
        • Tuz F.
        • Arteaga F.
        Feeding of a probiotic for the prevention of community-acquired diarrhea in young Mexican children.
        Pediatr. Res. 1996; 39 (Abstr.): 104
        • Sanders M.E.
        Probiotics.
        Food Technol. 1999; 53: 67-77
        • Sanders M.E.
        • Walker D.C.
        • Walker K.M.
        • Aoyama K.
        • Klaenhammer T.R.
        Performance of commercial cultures in fluid milk applications.
        J. Dairy Sci. 1996; 79: 943-955
        • Savaiano D.A.
        • AbouElAnouar D.A.G.
        • Smith D.E.
        • Levitt M.D.
        Lactose malabsorption from yogurt, pasteurized yogurt, sweet acidophilus milk, and cultured milk in lactase-deficient individuals.
        Am. J. Clin. Nutr. 1984; 40: 1219-1223
        • Shah N.
        Effectiveness of dairy products in alleviation of lactose intolerance.
        Food Australia. 1993; 45: 268-271
        • Simenhoff M.L.
        • Dunn S.R.
        • Zollner G.P.
        • Fitzpatrick M.E.D.
        • Emery S.M.
        • Sandine W.E.
        • Ayres J.W.
        Biomodulation of the toxic and nutritional effects of small bowel bacterial overgrowth in end-stage kidney disease using freeze-dried Lactobacillus acidophilus.
        Mineral Electrolyte Metab. 1996; 22: 92-96
        • Tannock G.W.
        Analysis of the intestinal microflora: a renaissance.
        Antonie van Leeuwenhoek. 1999; 76: 265-278
        • Taylor G.R.J.
        • Williams C.M.
        Effects of probiotics and prebiotics on blood lipids.
        Brit. J. Nutr. 1998; 80: S225-S230
        • Tejada-Simon M.V.
        • Lee J.H.
        • Ustunol Z.
        • Pestka J.J.
        Ingestion of yogurt containing Lactobacillus acidophilus and Bifidobacterium to potentiate immunoglobulin A responses to cholera toxin in mice.
        J. Dairy Sci. 1999; 82: 649-660
        • Thompson L.U.
        • Jenkins D.J.A.
        • Amer V.
        • Reicher R.
        • Jenkins A.
        • Kamulsky J.
        The effect of fermented and unfermented milks on serum cholesterol.
        Am. J. Clin. Nutr. 1982; 36: 1106-1111
        • Wagner R.D.
        • Pierson C.
        • Warner T.
        • Dohnalek M.
        • Farmer J.
        • Roberts L.
        • Hilty M.
        • Balish E.
        Biotherapeutic effects of probiotic bacteria on candidiasis on immunodeficient mice.
        Infect. Immun. 1997; 65: 4165-4172
        • Wagner R.
        • Warner T.
        • Robert L.
        • Farmer J.
        • Balish E.
        Colonization of congenitally immunodeficient mice with probiotic bacteria.
        Infect. Immun. 1997; 65: 345-3351
        • Walker D.C.
        • Klaenhammer T.R.
        Electrotransformation of Lactobacillus acidophilus group A1.
        FEMS Microbiol. Lett. 1996; 138: 233-237
        • Wright C.T.
        • Klaenhammer T.R.
        Calcium-induced alteration of cellular morphology affecting the resistance of Lactobacillus acidophilus to freezing.
        Appl Environ. Microbiol. 1981; 41: 807-815