Bayesian Estimation of Parameters of a Structural Model for Genetic Covariances Between Milk Yield in Five Regions of the United States

R. Rekaya,* K. A. Weigel,† and D. Gianola†

*Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
†Department of Dairy Science, University of Wisconsin, Madison, WI 53706

ABSTRACT

Inference about genetic covariance matrices using multiple-trait models is often hindered by lack of information. This leads to imprecise estimates of genetic parameters and of breeding values. Patterns in a genetic covariance matrix can be exploited to reduce the number of parameters and to increase quality of inferences. A structural model for genetic covariances was developed and fitted to milk yield data in five regions of the United States. This was compared with a standard multiple-trait analysis using a deviance information criterion, a measure of quality of fit. Data consisted of 3,465,334 Holstein first-lactation records from daughters of 43,755 sires in five regions of the United States (Midwest, Northeast, Northwest, Southeast, Southwest). Parameters of the structural model included an intercept and effects of measures of genetic and of management similarity on genetic covariances. Genetic similarity depended on the number of records contributed by sires that were common to a pair of regions. Management similarity was a function of the quantity of concentrate used to produce 1000 kg of milk in each pair of regions. The structural and the multiple-trait models gave similar estimates of genetic covariances, but the number of parameters was 8 in the former vs. 15 in the latter. Hence, estimates of genetic covariances were more precise with the structural model. A deviance information criterion suggested a slight superiority of the multiple-trait model, although probably within sampling error. For both models, genetic correlations between milk yield in five regions of the United States were larger than 0.93.

(Key words: structural model, covariance component, genotype × environment interaction, Bayesian method)

INTRODUCTION

Precise estimation of genetic covariances is difficult in multiple-trait models. Typically, this is due to insufficient statistical information. For example, when describing milk yield over several lactations, the number of genetic parameters is larger in a multi-trait model than in a univariate analysis. An obvious remedy is to use larger datasets, but this is not always practical, because collecting more data is time-consuming and expensive, especially in experimental settings. Also, increasing the number of records boosts computational demands and does not always lead to more information about genetic covariances, in a statistical sense. An alternative is to search for more parsimonious models.

In international genetic evaluation, for example, “traits” are defined according to country borders, e.g., milk yield in Italy and in the Netherlands is treated as a different trait. However, similarity in production systems between countries depends not only on geographical proximity but, importantly, on genetic ties and likeness of climatic conditions and management practices including quantity and quality of nutrient resources. Similarity between herds in different regions or countries can be used to describe genetic covariances. This would allow making better use of the available information, provided that the resulting model has fewer parameters and is not inferior in goodness of fit.

Information about climate, herd management practices, and genetic ties between regions (countries) can be exploited to explain patterns in a genetic covariance matrix using a structural model. If such model results in a lower degree of parameterization, it may lead to more precise inferences, because the same amount of information is used to estimate fewer parameters than in a standard multiple-trait analysis. In some animal breeding applications, patterns in covariance structure
are sometimes easy to identify (e.g., correlations between milk yields during lactation tend to be larger for adjacent test days).

The objective of this study was to present methodological developments for a structural model for genetic covariances, and to illustrate it via an application to first-lactation records of Holstein cows from five geographical regions of the United States.

MATERIAL AND METHODS

Multiple-Trait Model

Assume the following multiple-trait mixed linear model for \(t \) traits:

\[
y = X\beta + Zu + e
\]

where: \(y = y', y', \ldots, y_t' \) is the vector of records for the \(t \) traits; \(\beta \) and \(u \) are vectors of location effects and of additive genetic values, respectively; \(X \) and \(Z \) are the corresponding incidence matrices, and \(e \) is a residual vector. The data are assumed to be generated according to the stochastic process:

\[
y|\beta,u,R \sim N(X\beta + Zu,R)
\]

where \(R = I \otimes R_0 \), and \(R_0 = [r_{ij}] \) is a matrix of residual covariances between the \(t \) traits being analyzed.

In a Bayesian setting, prior information about unknown parameters or features of the model must be specified. For the location effects, the following vague normal prior will be used:

\[
p(\beta|\lambda) \sim N(0, I\lambda)
\]

where \(\lambda \) is a positive, scalar hyper-parameter that is large enough so as to convey weak prior precision. For additive genetic values, the usual multiple-trait normal distribution will be adopted as prior:

\[
u|\Sigma_g \sim N(0, A \otimes \Sigma_g)
\]

where \(A \) is a matrix of additive relationships among animals, and \(\Sigma_g = \{g_{ij}\} \) is a \(t \times t \) positive-definite genetic covariance matrix, with typical element \(g_{ij} (i,j = 1,2,\ldots,t) \). The priors for the elements of covariance matrices \(R_0 \) and \(\Sigma_g \) were taken to be uniform (on \(t \times t \) hyper-cubes), but bounded between minimum and maximum values, as follows:

\[
p(R_0) \propto k \quad r_{ij,\min} \leq r_{ij} \leq r_{ij,\max} \quad \forall \quad r_{ij}
\]

\[
p(\Sigma_g) \propto k \quad g_{ij,\min} \leq g_{ij} \leq g_{ij,\max} \quad \forall \quad g_{ij}
\]

where \(k \) is a constant.

Prior independence between \(\beta \), \(u \), \(R_0 \), and \(\Sigma_g \) was assumed, but allowing for the dependence stated in [4]. Thus, the joint prior density has the form:

\[
p(\beta,u,R_0, \Sigma_g|\lambda) = p(\beta|\lambda)p(u|\Sigma_g)\]

with:

\[\lambda \leq \infty \leq (\beta, u) \leq \infty; r_{ij,\min} \leq r_{ij} \leq r_{ij,\max} \quad \text{and} \quad g_{ij,\min} \leq g_{ij} \leq g_{ij,\max}.\]

In a standard multiple-trait analysis, all full conditional distributions needed for Bayesian implementation of a Markov Chain Monte Carlo (MCMC) algorithm, such as the Gibbs sampler, can be derived without difficulty (Varona et al., 1994; Wakefield et al., 1994; Wang et al., 1994).

Structural Model

The structural model for the genetic covariances involves an alternative parameterization of the multiple-trait model, aimed at explaining all possible \(t(t-1)/2 \) genetic covariances in terms of a fewer number of parameters. Here, the genetic covariance between each pair of traits is written as a linear function of a set of explanatory variables:

\[
g_{ij} = k_{ij}b
\]

where \(b \) is a vector of effects explaining the genetic covariance between traits \(i \) and \(j \), and \(k_{ij} \) is a corresponding row incidence vector of explanatory variables. In matrix notation, \(g = Kb \), where \(g \) is a \(t(t-1)/2 \times 1 \) vector of genetic covariances, and \(K \) is a \(t(t-1)/2 \times r \) incidence matrix, where \(r \) is the order of vector \(b \).

Under the new parameterization, the parameters of the structural model are: 1) \(\beta \) and \(u \), as defined before; 2) the diagonal elements of the genetic covariance matrix, \(g_{tt}(i = 1,2,\ldots,t) \); 3) the \(r \) parameters \((b) \) of the structural model for the covariances; and 4) the residual variance-covariance matrix. The sampling model remains as defined previously in [2]. The joint posterior density, after assigning a prior distribution to each of the new parameters of the model, is:

\[
p(\beta,u,g_{11}, g_{22}, \ldots, g_{tt}, b, R_0|y, \lambda) \propto p(y|\beta,u,R_0) \quad \text{for} \quad t
\]

\[
p(\beta|\lambda)p(R_0) \times p(u|b, g_{11}, g_{22}, \ldots, g_{tt})p(b)\prod_{i=1}^t p(g_{ii})
\]

Priors for \(\beta \) and \(u \) are as in [3] and [4], respectively. Specific assumptions about the new parameters in [8] are:

\[
p(b) \sim N(0, \Phi)
\]

where \(\phi \) is a diagonal matrix of order \(r \), with sufficiently large elements so as to make the prior distribution of \(b \) diffuse (not very informative). Further,

\[
p(g_i | v_i, \sigma_i^2) = v_i \sigma_i^2 \chi_i^{-2} \quad \text{for } i=1,2,...,t
\]

and, \(p(R_0) \propto k \) as in [5]. In [11], \(v_i \) and \(\sigma_i^2 \) are hyperparameters of a scaled inverse chi-square distribution.

The conditional posterior distributions of \(\beta, u, \) and \(R_0 \) are as in the standard multiple-trait analysis, that is, normal for location parameters and breeding values, and scaled inverted Wishart for the residual variance covariance matrix (Wang et al., 1994, Wakefield et al., 1994; Rekaya, 1997). After augmenting the posterior distribution with “missing” records, whenever this is appropriate, the conditional posterior distributions of parameters of the structural model \((b)\) and of the diagonal elements of the genetic covariance \((g_i)\) follow from [9] by treating all other parameters as constant. This leads to:

\[
p(b | \beta, u, g_{11}, g_{22}, ..., g_{tt}, R_0, y) \propto \]

\[
p(u | b, g_{11}, g_{22}, ..., g_{tt}) \propto \]

and:

\[
p(g_i | \beta, u, b, g_{11}, g_{22}, ..., g_{(i-1)(i-1)}, g_{(i+1)(i+1)}, ..., g_{tt}, R_0, y) \propto \]

\[
p(u | b, g_{11}, g_{22}, ..., g_{tt}) \times p(g_i | \sigma_i^2)
\]

for \(i=1,2,...,t \)

These conditional distributions do not involve the sampling model [2]. All information about parameters of the structural model comes through the additive genetic values, and from the prior distribution of the parameters. Unfortunately, at least with this parameterization, conditional distributions [12] and [13] are not in closed form. Therefore, draws from these distributions (e.g., with Gibbs sampling) cannot be done directly. However, a rejection scheme (Gilks, 1992) or a Metropolis algorithm (Metropolis et al., 1953) can be used instead.

Model Comparison

The standard multiple-trait model and the structural model can be compared using a deviance information criterion (DIC), defined by Spiegelhalter et al. (1998) as:

\[
DIC = \bar{D} + p_D
\]

where: \(\bar{D} = E_{\theta_0}[D(\theta)] \)

is the posterior expectation of the Bayesian deviance

\[
D(\theta) = -2 \log p(y | \theta)
\]

and \(p_D \), the “effective number of parameters” (see Appendix), is:

\[
p_D = \bar{D} - D(\bar{\theta})
\]

where \(\bar{\theta} \) is the posterior mean of parameters intervening in the sampling model [2].

A smaller value of DIC indicates a better fit of the model.

Model comparison is often based only on a measure of fit, or “deviance” between observed and predicted data. However, increasing model complexity, through adding more parameters, typically leads to a better fit. A fair comparison between models should consider both measures of fit and model complexity. From [14], it is seen that DIC engulfs these two criteria, as \(\bar{D} \) and \(p_D \) are measures of fit and complexity, respectively. In our context, the Bayesian deviance in [16] is:

\[
D(\theta) = (y - X\beta - Zu)'R^{-1}(y - X\beta - Zu) + N \log |R_0| + \text{Constant}
\]

where \(N \) is the order of \(y \) (\(i=1,2,...,t \)) assuming that all traits are recorded in all individuals. Note that the Bayesian deviance decreases as the sum of squares of errors decreases, the latter constituting the usual measure of fit.

Asymptotically, the effective number of parameters is approximately equal to the difference between the expected deviance and the deviance evaluated at the mean value of the parameters, as indicated in [17]. In the Appendix, a straightforward derivation of DIC is given. Using [17], equation [14] can be rewritten as:

\[
DIC = D(\bar{\theta}) + 2p_D
\]

illustrating that DIC consists of a measure of goodness of fit \(D(\bar{\theta}) \), with a penalty \((2p_D) \) for increasing model complexity. Hence, if two models have the same goodness of fit, the DIC criterion would favor the one with fewer parameters. The DIC is easy to estimate in a MCMC implementation. At each iteration of MCMC, the Bayesian deviance, \(D(\theta) \), is computed. At the end of iteration, the mean of the Bayesian deviance, \(D_0 \), as well as the mean value of the model parameters, \(\bar{\theta} \), is calculated, leading directly to [14].

Application to Holstein Data from Five Regions of the United States

Data. The objective was to illustrate the structural model using Holstein production records. Observations
were first-lactation milk yields of daughters of AI sires in five regions of the United States (Midwest = 1, Northeast = 2, Southeast = 3, Southwest = 4, and Northwest = 5). After edits (≥10 records per sire and DIM ≥ 275) the data consisted of 3,465,334 lactations from 43,755 sires in 336,538 herd-year-seasons. Years represented were 1985 to 1997, and seasons were formed using 3-mo classes, starting by December-February, etc. Number of herd-year-season classes, sires and records, by region, are in Table 1. Most cows were from regions 1, 2, and 3. The pedigree file included 46,095 bulls.

Analyses. Two analyses were performed. The first one involved inferring genetic covariances between milk yield in the five regions using a standard multiple-trait approach, i.e., estimating directly the genetic variance-covariance matrix of order 5 × 5. In the second analysis, several structural models were fitted to the genetic covariances and, hence, the genetic covariance matrix was estimated indirectly from the Gibbs sampling draws for \(g_{ijl(r)} \) and \(g_{ij} = k_{ij} b \). In both analyses, the following sire model was used:

\[
y_{ijkl(r)} = HYS_i + AC_i + \gamma_r DIM_{ijkl(r)} + s_{kr} + e_{ijkl(r)}
\]

where: \(y_{ijkl(r)} \) is the milk yield of daughter \(l \) of sire \(k \) in region \(r \) \((r = 1,2,...,5)\); \(HYS_i \) \((i = 1,2,...,336,538)\) is the effect of herd-year-season \(i \); \(AC_j \) \((j = 1,2,...,4)\) is the effect of age at calving \(j \); \(\lambda_r \) is a region-specific regression coefficient on days in milk \((DIM)\); \(s_{kr} \) is the transmitting ability of sire \(k \) in region \(r \) and \(e_{ijkl(r)} \) is the residual term. Residual covariances between regions are zero, this leading to a simpler expression for \(D(\theta) \).

Structural model for the genetic covariance. A three-parameter model was used to describe 10 genetic correlations (5 traits). Following equation [8], the additive genetic covariance (4 times the “sire” covariance) between regions \(i \) and \(j \) was described as:

\[
g_{ij} = \mu + b_1 GS(i,j) + b_2 MS(i,j)
\]

where \(\mu \) is an intercept, common to all off diagonal elements of the covariance matrix; \(GS(i,j) \) and \(MS(i,j) \) are measures of genetic and management similarity between regions \(i \) and \(j \), respectively, and \(b_1 \) and \(b_2 \) are regression coefficients. Following the notation in [8], \(b = (\mu,b_1,b_2)^T \).

Definition of Genetic and Management Similarity

Genetic similarity between regions \(i \) and \(j \) was defined arbitrarily as the ratio between the number of daughters of bulls used in common in the two regions and the total number of daughters of all bulls used in the pair of regions:

\[
GS(i,j) = \frac{\sum_{k=1}^{2} C(i,j) ND_{kr}}{\sum_{r=1}^{2} T(i,j) ND_{kr}}
\]

where \(C(i,j) \) is the number of bulls in common used in regions \(i \) and \(j \), \(T(i,j) \) is the total number of bulls used in the two regions, and \(ND_{kr} \) is the number of daughters of bull \(k \) in region \(r \) \((r = 1,2)\). As noted, the definition of genetic similarity is arbitrary; an alternative could have been \(C(i,j) / T(i,j) \), without making reference to differential usage of sires.

Management similarity was arbitrarily defined as the ratio between the quantity of concentrate used to produce 1000 kg of milk \((P^{1000})\) in regions \(i \) and \(j \).

\[
MS(i,j) = F_{i}^{P^{1000}} / F_{j}^{P^{1000}} = MS(j,i)
\]

To ensure symmetry of the genetic variance-covariance matrix, the restriction \(MS(j,i) = MS(i,j) \) was imposed as noted. An alternative measure of similarity can be \(MS(i,j) = MS(j,i) = |\log (F_{i}^{P^{1000}} / F_{j}^{P^{1000}})| \). Values of \(GS(i,j) \) and \(MS(i,j) \) for each pair of regions are in Table 2. The values ranged between 0.35 and 0.46 for genetic similarity, and 0.85 to 1.34 for management similarity.

Prior distributions. In the two analyses, we used \(\lambda = 10^8 \), so the prior distribution of \(\beta \) in [3] was
In this application, the residual variance-covariance matrix \(R_0 \) was diagonal and we used the following proper, independent, priors for each of its diagonal elements:

\[
r_{ii} \sim U[0, \ 2 \times 10^6] \quad \text{for } i=1,2,\ldots,5.
\]

In the standard multiple-trait analysis, the prior for each of the elements of the genetic variance covariance matrix was:

\[
g_{ii} \sim U[g_{ij,\min}, \ g_{ij,\max}]
\]

where \(g_{ij,\max} = 10^6 \) for all \(i \) and \(j \), and

\[
\left\{ \begin{array}{ll}
g_{ij,\min} = 0 & \text{if } i = j \\
g_{ij,\min} = -10^6 & \text{if } i \neq j
\end{array} \right.
\]

In the structural model, the priors for \(g_{ii} \ (i=1,2,\ldots,5) \), the diagonal elements of the genetic covariance matrix, were as for the standard multiple-trait approach. Each of the elements of \(b \) was assigned a normal prior with mean 0 and variance \(10^5 \). This takes an a priori stance of “no effect” of either genetic or management similarity on \(g_{ij} \), but with a sufficiently large uncertainty, such that their effects range with high probability between \(-5 \times 10^4 \) and \(5 \times 10^4 \) in the prior distribution.

Proper priors were used throughout, thus ensuring propriety of the posterior distribution. It must be noted that the structural model confers more flexibility in the assignment of priors to components of the genetic covariance matrix than the standard multiple-trait approach.

Implementation

For the standard multiple-trait model, all conditional posterior distributions needed for Gibbs sampling were in closed form, as pointed out earlier. In the structural model, the conditional posterior distributions of \(b = (\mu,b_1,b_2)^t \) and those of the diagonal elements of the genetic (co)variance matrix, \(g_{ii}, \ (i=1,2,\ldots,5) \), were not in a recognizable form. The \(b \) parameters were updated via the Metropolis algorithm (Metropolis et al., 1953), while the Metropolis-Hastings algorithm (Hastings, 1970) was used for updating the diagonal elements, \(g_{ii} \). For the parameters in \(b \), a normal proposal density was centered at the current value of the Markov chain, and with an arbitrary variance such that an acceptance rate of 30 to 50% could be obtained, as recommended by Carlin and Louis (1996). The variances of the proposal distributions for \(\mu,b_1,b_2 \) were 900, 200, and 70, respectively. We calculated the ratio between the posterior density evaluated at the candidate value and at the current value. If the ratio was \(\geq 1 \), we accepted the candidate value. If the ratio was \(< 1 \), the chain moved to the next step with probability equal to this ratio. For the diagonal elements of the genetic covariance matrix, a scaled inverted chi-square distribution was used as proposal. Its mean was equal to the current value of the Markov chain, and its variance was equal to the square root of the current value multiplied by 10. When draws for the genetic variance-covariance matrix were obtained (for both models), it was ensured that the matrices were positive-definite and consistent with the boundaries introduced by the prior distributions.

RESULTS

Table 3 presents estimates of genetic variances and covariances for milk yield between the five regions obtained with the standard multiple-trait analysis. Genetic covariances were positive and large, relative to their posterior standard deviations. Genetic variances were similar across regions, with slightly higher values for the Northeast and Southwest. Given the large number of records and the strong genetic ties between regions, the posterior precision of the genetic covariance components was high, as indicated by small posterior standard deviations and narrowness of the posterior distributions between the 2.5 and 97.5% quantiles. In fact, the posterior coefficients of variation ranged be-
between 1.7 and 2.6% for genetic variances in the Midwest and Southeast, respectively. Similar, high, levels of posterior precision were obtained for the genetic covariances.

Table 4 shows posterior means and standard deviations of effects of parameters (b) of the structural model for the genetic covariances. All posterior means were positive, with most of the posterior probability in the positive part of the real line. This indicates positive true genetic covariances, and an increase in covariance as genetic and management similarity increase. For example, using Tables 2 and 4, the expected genetic covariance between regions 1 and 2 would be given, after rounding, by: $65,636 + 45,402 \times 0.44 + 5,184 \times 0.85 = 90,019$ kg2.

Table 5 shows estimates of genetic variances and covariances between milk yield in different regions using the structural model. The latter values were computed using the draws for the parameters of the genetic covariance model, b, as mentioned above. We noted a lower genetic variance for Northeast and Southwest, and larger genetic variances for the Midwest, Northwest, and Southeast relative to estimates found using the standard multiple-trait model. The differences in genetic variance between the two models were between 2.5 to 10%. No pattern was seen in these differences, perhaps reflecting Monte Carlo error. Genetic covariances were slightly lower in the structural model in five out of 10 comparisons, suggesting that differences are probably within Monte Carlo error. However, there was a dramatic increase in precision of estimates of the elements of the genetic covariance matrix when using the structural model. The posterior standard deviations were reduced to more than 1/2 of those found with the standard model. This result is not surprising, given the fewer number of parameters in the structural model. The same was observed for the posterior distributions, with the 95% credibility regions being narrower for the structural model. Genetic correlations (Table 6) were high throughout and very similar for both models. The lowest genetic correlations were between the Southwest and the Midwest (0.93 with the structural model, although the estimate was 0.94 with the multiple trait model), and between the Southeast and Southwest (0.93 with the standard multiple-trait approach and 0.94 with the structural model).

Posterior means and standard deviations of residual variances of milk yield in the five regions are shown for both models in Table 7. Results were similar. In the Midwest, Northeast, and Southeast, residual variances were slightly lower with the standard multiple-trait model. The differences in genetic variance between the two models were between 2.5 to 10%. No pattern was seen in these differences, perhaps reflecting Monte Carlo error. Genetic covariances were slightly lower in the structural model in five out of 10 comparisons, suggesting that differences are probably within Monte Carlo error. However, there was a dramatic increase in precision of estimates of the elements of the genetic covariance matrix when using the structural model. The posterior standard deviations were reduced to more than 1/2 of those found with the standard model. This result is not surprising, given the fewer number of parameters in the structural model. Genetic correlations (Table 6) were high throughout and very similar for both models. The lowest genetic correlations were between the Southwest and the Midwest (0.93 with the structural model, although the estimate was 0.94 with the multiple trait model), and between the Southeast and Southwest (0.93 with the standard multiple-trait approach and 0.94 with the structural model).

Table 4. Posterior means and standard deviations of effects of parameters of the structural model for genetic covariances (kg2).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>65,636</td>
<td>620</td>
</tr>
<tr>
<td>b_1</td>
<td>45,402</td>
<td>3463</td>
</tr>
<tr>
<td>b_2</td>
<td>5,184</td>
<td>935</td>
</tr>
</tbody>
</table>

1 μ = intercept, b_1 = regression on genetic similarity and b_2 = regression on management similarity.

Table 5. Posterior mean, standard deviations and quantiles of genetic covariances between milk yield (kg2) in five regions: structural model.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>SD</th>
<th>2.5%</th>
<th>50%</th>
<th>97.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ_{11}</td>
<td>92,617</td>
<td>711</td>
<td>90,840</td>
<td>92,724</td>
<td>94,357</td>
</tr>
<tr>
<td>γ_{12}</td>
<td>96,539</td>
<td>1086</td>
<td>93,917</td>
<td>96,496</td>
<td>98,812</td>
</tr>
<tr>
<td>γ_{13}</td>
<td>93,134</td>
<td>806</td>
<td>90,582</td>
<td>93,082</td>
<td>95,011</td>
</tr>
<tr>
<td>γ_{14}</td>
<td>89,487</td>
<td>1,274</td>
<td>86,805</td>
<td>89,389</td>
<td>91,956</td>
</tr>
<tr>
<td>γ_{15}</td>
<td>96,622</td>
<td>1,353</td>
<td>93,381</td>
<td>96,681</td>
<td>99,623</td>
</tr>
<tr>
<td>γ_{21}</td>
<td>90,279</td>
<td>626</td>
<td>88,883</td>
<td>90,342</td>
<td>91,643</td>
</tr>
<tr>
<td>γ_{22}</td>
<td>90,077</td>
<td>617</td>
<td>88,691</td>
<td>90,063</td>
<td>91,412</td>
</tr>
<tr>
<td>γ_{23}</td>
<td>88,081</td>
<td>624</td>
<td>86,872</td>
<td>88,111</td>
<td>89,744</td>
</tr>
<tr>
<td>γ_{24}</td>
<td>90,143</td>
<td>731</td>
<td>88,638</td>
<td>90,188</td>
<td>91,762</td>
</tr>
<tr>
<td>γ_{25}</td>
<td>90,268</td>
<td>609</td>
<td>88,965</td>
<td>90,307</td>
<td>91,607</td>
</tr>
<tr>
<td>γ_{31}</td>
<td>90,046</td>
<td>658</td>
<td>88,756</td>
<td>89,994</td>
<td>91,542</td>
</tr>
<tr>
<td>γ_{32}</td>
<td>91,124</td>
<td>667</td>
<td>89,584</td>
<td>91,036</td>
<td>92,313</td>
</tr>
<tr>
<td>γ_{33}</td>
<td>88,195</td>
<td>593</td>
<td>86,972</td>
<td>88,213</td>
<td>89,574</td>
</tr>
<tr>
<td>γ_{34}</td>
<td>91,260</td>
<td>712</td>
<td>89,614</td>
<td>91,037</td>
<td>92,967</td>
</tr>
<tr>
<td>γ_{35}</td>
<td>87,819</td>
<td>728</td>
<td>86,348</td>
<td>87,772</td>
<td>89,025</td>
</tr>
</tbody>
</table>

$^1 \gamma_{ij}$ = genetic (co)variance between milk yields in regions i and j (1 = Midwest, 2 = Northeast, 3 = Northwest, 4 = Southeast, 5 = Southwest).

Table 6. Genetic correlations between five regions of the USA using the standard multiple-trait model (above diagonal) and a structural model (below diagonal).

<table>
<thead>
<tr>
<th>Region</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>. .</td>
<td>0.97</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>2</td>
<td>0.94</td>
<td>1</td>
<td>. .</td>
<td>0.94</td>
<td>0.97</td>
</tr>
<tr>
<td>3</td>
<td>0.97</td>
<td>0.95</td>
<td>1</td>
<td>. .</td>
<td>0.95</td>
</tr>
<tr>
<td>4</td>
<td>0.95</td>
<td>0.95</td>
<td>0.97</td>
<td>1</td>
<td>. .</td>
</tr>
<tr>
<td>5</td>
<td>0.93</td>
<td>0.94</td>
<td>0.96</td>
<td>0.94</td>
<td>1</td>
</tr>
</tbody>
</table>

1 1 = Midwest, 2 = Northeast, 3 = Northwest, 4 = Southeast, 5 = Southwest.

Table 7. Posterior means and standard deviations of residual variances (kg2) in five regions of the United States using the standard multiple-trait model and a structural model.

<table>
<thead>
<tr>
<th>Region</th>
<th>Standard</th>
<th>Structural</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,174,750</td>
<td>2,157</td>
</tr>
<tr>
<td>2</td>
<td>1,265,673</td>
<td>2,562</td>
</tr>
<tr>
<td>3</td>
<td>1,407,540</td>
<td>2,406</td>
</tr>
<tr>
<td>4</td>
<td>1,155,217</td>
<td>3,105</td>
</tr>
<tr>
<td>5</td>
<td>1,476,500</td>
<td>5,215</td>
</tr>
</tbody>
</table>

1 1 = Midwest, 2 = Northeast, 3 = Northwest, 4 = Southeast, 5 = Southwest.
The structural model is expected to give better results when the amount of information is small and when genetic ties between traits (regions) are weak, which was not the case here. Also, the performance of the structural model depends on the possibility of detecting patterns in the structure of the genetic covariances, and of explaining these patterns with quantitative variables, e.g., management similarity in this study.

The results of the two analyses (high estimates of genetic correlations and overlap between posterior distributions of genetic variances) suggest that it is reasonable to treat data from different geographical regions of the United States as a single trait, although perhaps with heterogeneous residual variance. This has been the approach followed in official genetic evaluation for milk yield in dairy cattle in the United States.

CONCLUSIONS

The structural model presented here, illustrated with dairy cattle data, is an appealing and flexible technique for making inferences about genetic covariances in some animal breeding applications. Its advantages may be even clearer in situations in which there is a limited amount of information on genetic covariances. Typically, insufficient information is due to few genetic ties between traits (e.g., regions in this study). External information regarding management, genetic similarity and climate can be used to explore patterns in genetic covariances. The structural model has fewer parameters than a standard multi-trait model, and can produce a large increase in precision of parameter estimates. In our example, genetic covariances and heritabilities were estimated much more precisely than in the standard multiple-trait analysis, without any adverse effects on the values of the genetic correlations and without compromising model fit. In international genetic evaluation of dairy cattle, genetic ties between countries are often weak. Here, a standard multiple-trait analysis, although technically feasible, would give estimates of genetic correlations that may be of little practical value, due to large standard errors or posterior standard deviations. On the other hand, a structural model with a few parameters explaining genetic covariances is expected to be advantageous in such a situation. The performance of the structural model, however, depends on our ability of detecting existing patterns in the covariance structure, and on finding a right set of variables or parameters to explain such patterns. In our study, information from the dataset (genetic similarity) and from public databases (management similarity) was easy to obtain. In this example, even with a large amount of data and with strong genetic ties between traits (regions), the structural model gave results that

Table 8. Posterior means and standard deviations of heritability of milk yield in five regions of the United States using the standard multiple-trait model and a structural model.

<table>
<thead>
<tr>
<th>Region</th>
<th>Standard Mean</th>
<th>Standard SD</th>
<th>Structural Mean</th>
<th>Structural SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.308</td>
<td>0.0049</td>
<td>0.316</td>
<td>0.0044</td>
</tr>
<tr>
<td>2</td>
<td>0.321</td>
<td>0.0051</td>
<td>0.304</td>
<td>0.0047</td>
</tr>
<tr>
<td>3</td>
<td>0.256</td>
<td>0.0048</td>
<td>0.271</td>
<td>0.0048</td>
</tr>
<tr>
<td>4</td>
<td>0.289</td>
<td>0.0078</td>
<td>0.297</td>
<td>0.0062</td>
</tr>
<tr>
<td>5</td>
<td>0.292</td>
<td>0.0073</td>
<td>0.279</td>
<td>0.0054</td>
</tr>
</tbody>
</table>

1 = Midwest, 2 = Northeast, 3 = Northwest, 4 = Southeast, 5 = Southwest.

model, and the opposite was true in the Northwest and Southwest. There were no large differences in the posterior standard deviations of the residual variances, but there was a tendency for these to be smaller in the structural model. At any rate, residual variances were estimated with high precision in the two models, given the large amount of data used in the analysis. In general, differences in residual variances were negligible.

Posterior means of heritability (Table 8) were similar for both models, but precision was greater for the structural model, especially for the Southwest (fewer sires). Here, the posterior variance of heritability with the structural model was 50% of the variance obtained with the multiple-trait analysis (0.0073 vs. 0.0053). This illustrates that imposing a parsimonious structure on the genetic covariance can also enhance the precision of inferences about heritability. In general, heritability of milk yield was about 0.30, with the highest point estimates being for the Northeast and Midwest (0.31 to 0.32), and the lowest one for the Northwest, at around 0.26 with both models.

The DIC was slightly lower for the standard multiple-trait model (0.003%), but differences were within the limits of Monte Carlo error. Table 9 presents the DIC values and its components in the two models. The multiple-trait model had a slightly better fit, but received a slightly larger penalty from having a larger “effective” number of parameters. The goodness of fit component accounted for about 98% of the DIC in the two models.

Table 9. Expectation of the Bayesian deviance, $D(\theta)$, Bayesian deviance evaluated at the posterior mean of model parameters, $D(\bar{y})$, effective number of parameters (p_D) and deviance information criterion (DIC) for the standard multiple-trait model and the structural model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Standard $D(\theta)$</th>
<th>Standard $D(\bar{y})$</th>
<th>Structural $D(\theta)$</th>
<th>Structural $D(\bar{y})$</th>
<th>p_D</th>
<th>DIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38490642</td>
<td>38131602</td>
<td>38500483</td>
<td>38141504</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

The results of the two analyses (high estimates of genetic correlations and overlap between posterior distributions of genetic variances) suggest that it is reasonable to treat data from different geographical regions of the United States as a single trait, although perhaps with heterogeneous residual variance. This has been the approach followed in official genetic evaluation for milk yield in dairy cattle in the United States.
were similar to those from the standard multiple-trait model, with dramatically larger precision, and without any obviously adverse effect on model fit.

The structural model is an extension to the multiple-trait domain of models for heterogeneous variances described by Foulley et al. (1990, 1992). An appealing further extension would consist of imposing a structure both on the genetic covariances and on the residual dispersion components. The latter are known to be heterogeneous in dairy cattle breeding and such heterogeneity has been related to explanatory factors (Weigel et al., 1993).

REFERENCES

Spiegelhalter, D. J., N. G. Best, and B. P. Carlin. 1998. Bayesian deviance, the effective number of parameters and the complexity of arbitrarily complex models. Technical Report, Medical Research Council, Biostatistics Unit, Cambridge, UK.

APPENDIX

Let the entire vector of parameters of the model be \(\theta \) with \(p \) being the number of elements it possesses. From [17] we have:

\[
P_D = \overline{D} - D(\overline{\theta})
\]

Expand now \(D(\theta) \) up to the second order around \(E_{\theta(y)} = \overline{\theta} \):

\[
D(\theta) = D(\overline{\theta}) + (\theta - \overline{\theta})' \frac{\partial^2 D(\theta)}{\partial \theta^2} |_{\theta = \overline{\theta}} + \frac{1}{2}(\theta - \overline{\theta})' \frac{\partial^2 D(\theta)}{\partial \theta \partial \theta} |_{\theta = \overline{\theta}} (\theta - \overline{\theta})
\]

[19]

Recall that \(D(\theta) = -2 \log p(y|\theta) = -2L \). Then:

\[
\frac{\partial D(\theta)}{\partial \theta} = -2L' \quad \text{and} \quad \frac{\partial^2 D(\theta)}{\partial \theta \partial \theta} = -2L''
\]

[20]

where \(L \) is the log-likelihood, and \(L' \) and \(L'' \) are the first and second derivatives of the log-likelihood with respect to \(\theta \), respectively. Using [20] in [19]:

\[
D(\theta) = D(\overline{\theta}) - 2(\theta - \overline{\theta})' L_{\overline{\theta} \overline{\theta}}^{-1} (\theta - \overline{\theta}) - (\theta - \overline{\theta})' L_{\overline{\theta} \overline{\theta}}^{-1} (\theta - \overline{\theta})
\]

[21]

Asymptotically, it is well known that:

\[
p(y|\theta) \sim N(\overline{\theta}, [-L_{\overline{\theta} \overline{\theta}}]^{-1})
\]

[22]

where \(\overline{\theta} \) is the maximum likelihood estimator. From [21], and replacing \(\theta \) by \(\overline{\theta} \),

\[
D(\theta) = D(\overline{\theta}) - (\theta - \overline{\theta})' L_{\overline{\theta} \overline{\theta}}^{-1} (\theta - \overline{\theta}) = D(\overline{\theta}) + \frac{1}{2}(\theta - \overline{\theta})' L_{\overline{\theta} \overline{\theta}}^{-1} (\theta - \overline{\theta})
\]

[23]

Under [22] it can be shown that \((\theta - \overline{\theta})' L_{\overline{\theta} \overline{\theta}}^{-1} (\theta - \overline{\theta}) \) has an asymptotic chi-square distribution with \(p \) degrees of freedom (Searle, 1971). From [22] one can write:

\[
(\theta - \overline{\theta})' y - N(0, [-L_{\overline{\theta} \overline{\theta}}]^{-1})
\]

[24]

Then, \((\theta - \overline{\theta})' L_{\overline{\theta} \overline{\theta}}^{-1} (\theta - \overline{\theta}) \) is chi-square on \(p \) degrees of freedom, if and only if, \(L_{\overline{\theta} \overline{\theta}}^{-1} \) is idempotent with rank \(p \). This is the case, as \(L_{\overline{\theta} \overline{\theta}}^{-1} \) is the identity matrix.

Finally, taking expectations in [23] with respect to the posterior distribution of \(\theta \) leads to the asymptotic results:

\[
E_{\theta(y)}[D(\theta)] = D(\overline{\theta}) + p
\]

and

\[
p = E_{\theta(y)}[D(\theta)] - D(\overline{\theta})
\]

as in [17]. Recall that asymptotically, \(\theta = \overline{\theta} \).