Abstract
Key words
Introduction
- Schmelz E.M.
- Dillehay D.L.
- Webb S.K.
- Reiter A.
- Adams J.
- Merrill A.H.
Materials and Methods
Materials
Analysis
DM, Ash, Ca, Protein, Lipids, Reducing Sugars, and PL
Protein Profiling by SDS-PAGE
Experimental Design of Thermocalcic Aggregation
Response variables | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Design factors | Pellet mass (g/100 g of whey) | Pellet DM (g/100 g) | Polar lipids recovery in pellet (% of total whey polar lipids) | Protein recovery (% of total whey protein) | ||||||
T (°C) | pH | Ca (g/100 g of whey) | AV | PV | AV | PV | AV | PV | AV | PV |
40 | 6.5 | 0.17 | 2.6 | 2.8 | 14.4 | 14.7 | 32.4 | 33.9 | 15.0 | 18.1 |
70 | 6.5 | 0.17 | 3.3 | 3.1 | 16.2 | 16.4 | 35.9 | 34.9 | 23.7 | 25.8 |
40 | 8 | 0.17 | 8.9 | 9.1 | 11.1 | 10.9 | 76.1 | 81.2 | 30.1 | 29.2 |
70 | 8 | 0.17 | 6.9 | 6.7 | 17.0 | 16.7 | 86.7 | 82.2 | 48.3 | 46.5 |
40 | 7.25 | 0.1 | 8.0 | 7.7 | 11.3 | 11.4 | 79.3 | 74.7 | 27.1 | 27.9 |
70 | 7.25 | 0.1 | 6.5 | 6.6 | 15.4 | 15.2 | 72.6 | 75.7 | 40.1 | 40.4 |
40 | 7.25 | 0.24 | 8.1 | 7.9 | 13.3 | 13.2 | 82.8 | 80.7 | 33.5 | 32.9 |
70 | 7.25 | 0.24 | 6.4 | 6.8 | 16.8 | 17.0 | 79.3 | 81.7 | 43.6 | 45.4 |
55 | 6.5 | 0.1 | 3.1 | 3.3 | 14.4 | 14.0 | 40.0 | 38.2 | 20.1 | 15.8 |
55 | 8 | 0.1 | 8.4 | 8.3 | 11.8 | 12.3 | 83.4 | 85.6 | 28.6 | 31.7 |
55 | 6.5 | 0.24 | 3.8 | 3.5 | 15.9 | 15.8 | 42.8 | 44.2 | 21.8 | 20.9 |
55 | 8 | 0.24 | 8.5 | 8.5 | 14.0 | 14.1 | 94.3 | 91.6 | 37.1 | 36.7 |
55 | 7.25 | 0.17 | 6.8 | 6.8 | 16.0 | 16.1 | 85.6 | 85.0 | 39.8 | 40.3 |
55 | 7.25 | 0.17 | 6.6 | 6.8 | 16.3 | 16.1 | 82.1 | 85.0 | 41.4 | 40.3 |
55 | 7.25 | 0.17 | 6.7 | 6.8 | 16.3 | 16.1 | 81.2 | 85.0 | 39.6 | 40.3 |
55 | 7.25 | 0.17 | 6.3 | 6.8 | 16.6 | 16.1 | 81.4 | 85.0 | 39.7 | 40.3 |
55 | 7.25 | 0.17 | 7.5 | 6.8 | 15.4 | 16.1 | 93.7 | 85.0 | 43.3 | 40.3 |
Graphics and Statistics
Results
Effect of pH, Temperature, and Ca Addition
Whey Composition
Experimental Design
ANOVA terms | Response variables | |||
---|---|---|---|---|
Pellet mass (g/100 g of whey) | Pellet DM (g/100 g) | Polar lipid recovery in pellet (% of total whey polar lipids) | Protein recovery in pellet (% of total whey protein) | |
Sum of squares | ||||
Model | 62.08 | 58.05 | 6,547.09 | 1,419.29 |
Residual | 1.51 | 1.45 | 219.12 | 63.44 |
Lack of fit | 0.67 | 0.61 | 107.85 | 52.94 |
Pure error | 0.84 | 0.84 | 111.27 | 10.51 |
Corrected total | 63.59 | 59.50 | 6,766.21 | 1,482.74 |
Predicted residual | 4.94 | 6.15 | 493.41 | 305.03 |
Significance (P-value) | ||||
Model | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Lack of fit | 0.7633 | 0.7164 | 0.7677 | 0.1305 |
Determination coefficients | ||||
R2 | 0.9762 | 0.9756 | 0.9676 | 0.9572 |
Predicted R2 | 0.9223 | 0.8967 | 0.9271 | 0.7943 |
Model coefficient | Significance (P-value) | Final equation terms | ||||||
---|---|---|---|---|---|---|---|---|
Pellet mass (g/100 g of whey) | Pellet DM (g/100 g) | Polar lipid recovery in pellet (% of total whey polar lipids) | Protein recovery in pellet (% of total whey protein) | Pellet mass (g/100 g of whey) | Pellet DM (g/100 g) | Polar lipid recovery in pellet (% of total whey polar lipids) | Protein recovery in pellet (% of total whey protein) | |
Intercept | −162.48 | −38.74 | −2,128.46 | −972.06 | ||||
T | 0.0022 | <0.0001 | 0.7606 | <0.0001 | 0.39 | −0.24 | 3.37 | −1.13 |
pH | <0.0001 | 0.0002 | <0.0001 | <0.0001 | 41.40 | 14.46 | 551.23 | 266.53 |
Ca | 0.5257 | 0.0001 | 0.0838 | 0.0182 | −31.72 | 100.53 | 42.86 | 285.57 |
T2 | NS | 0.0112 | 0.0094 | NS | 0 | −0.0028 | −0.030 | 0 |
pH2 | <0.0001 | 0.0027 | <0.0001 | <0.0001 | −2.40 | −1.43 | −35.84 | −18.46 |
Ca2 | 0.0306 | 0.0001 | NS | 0.0149 | 97.10 | −257.95 | 0 | −734.38 |
T × pH | 0.0064 | 0.0006 | NS | 0.0863 | −0.059 | 0.092 | 0 | 0.21 |
T × Ca | NS | NS | NS | NS | 0 | 0 | 0 | 0 |
T × pH | NS | NS | NS | NS | 0 | 0 | 0 | 0 |
Pellet Yield and DM

PL Recovery
Protein Recovery
SDS-PAGE

Washing of the Pellet
Item | DM | Ash | Protein | Sugars | Lipids | Polar lipids | Polar lipids/DM |
---|---|---|---|---|---|---|---|
Whey pellets | 5.78 ± 0.03 | 0.62 ± 0.00 | 0.48 ± 0.01 | 3.63 ± 0.01 | 0.31 ± 0.01 | 0.11 ± 0.00 | 1.97 ± 0.05 |
Pellets | |||||||
Original | 15.80 ± 0.22 | 4.35 ± 0.06 | 2.72 ± 0.05 | 5.05 ± 0.03 | 3.81 ± 0.04 | 1.32 ± 0.05 | 8.34 ± 0.35 |
Wash 1 | 12.60 ± 0.43 | 4.40 ± 0.06 | 2.83 ± 0.08 | 0.10 ± 0.01 | 4.42 ± 0.08 | 1.35 ± 0.10 | 10.70 ± 0.87 |
Wash 2 | 11.68 ± 0.21 | 4.74 ± 0.33 | 2.71 ± 0.03 | < 0.01 | 3.74 ± 0.09 | 1.31 ± 0.09 | 11.18 ± 0.76 |
Supernatants | |||||||
Original | 5.48 ± 0.09 | 0.95 ± 0.01 | 0.28 ± 0.01 | 3.52 ± 0.07 | 0.04 ± 0.00 | < 0.01 | < 0.18 |
Wash 1 | 0.32 ± 0.11 | 0.05 ± 0.00 | 0.03 ± 0.01 | 0.13 ± 0.01 | 0.03 ± 0.01 | 0.02 ± 0.00 | 6.60 ± 2.38 |
Wash 2 | 0.24 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.00 | 0.01 ± 0.00 | 0.08 ± 0.00 | 0.03 ± 0.00 | 13.67 ± 0.80 |
Pellet | Pellet mass | DM | Ash | Protein | Sugars | Lipids | Polar lipids |
---|---|---|---|---|---|---|---|
Original | 7.86 ± 0.09 | 20.1 ± 0.4 | 33.4 ± 0.7 | 44.5 ± 1.6 | 10.9 ± 0.2 | 97.7 ± 3.2 | 91.0 ± 4.6 |
Wash 1 | 6.40 ± 0.09 | 13.1 ± 0.5 | 27.5 ± 0.7 | 37.8 ± 1.6 | 0.2 ± 0.0 | 92.2 ± 3.5 | 75.9 ± 6.1 |
Wash 2 | 3.99 ± 0.00 | 7.5 ± 0.1 | 18.5 ± 1.3 | 22.6 ± 0.6 | Trace | 48.7 ± 1.7 | 45.8 ± 3.2 |

Discussion
Conclusions
Acknowledgments
Supplementary data
- Interpretive summary
References
- Handbuch der Lebensmittel.Springer-Verlag, Berlin, Germany1969
- Official Methods of Analysis.AOAC, Washington, DC2002
Attebery, J. M., inventor. 1968. Removing lipid material from whey. US Pat. No. 3560219.
- Quantitation of CNs and whey proteins of processed milks and whey protein concentrates, application of gel electrophoresis and comparison with Harland Ashworth procedure.J. Dairy Sci. 1985; 68: 23-31
Best, E., B. Sprössler, and H. Plainer, inventors. 1982. Process for the removal of turbid material from whey. EP Pat. No. 0057273.
Boone, M., inventor. 2003. Quark from buttermilk and method for preparing and further processing. EP Pat. No. 1274314.
- Recovery and nutritional evaluation of proteinaceous solids separated from whey by coagulation with chitosan.J. Dairy Sci. 1976; 59: 1874-1880
- Progress in milk fat globule membrane research: A review.Lait. 2000; 80: 209-222
DeWit, J. N., and R. De Boer, inventors. 1977. Method for the clarification of liquids containing whey protein. NL Pat. No. 7513645.
- Purification of beta-lactoglobulin—Isolation of genetic-variants and influence of purification method on secondary structure.Milchwissenschaft. 1990; 45: 694-698
- Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers.Gastroenterology. 2002; 122: 948-956
- Clarification du lactosérum acide de caséinerie.La Technique Laitiere. 1985; 1003: 37-41
- Clarification of sweet cheese whey by thermocalcic aggregation of residual fat.Lait. 1985; 65: 1-20
- Dairy Chemistry and Biochemistry.Blackie Academic & Professional, London, UK1998
- Microfiltration performance—Physicochemical aspects of whey pretreatment.J. Dairy Res. 1995; 62: 269-279
- Whey clarification by a soluble polycationic agent.Biotechnol. Tech. 1995; 9: 487-490
Grindstaff, D. A., and W. P. Ahern, inventors. 1974. Process for pretreating raw cheese whey. US Pat. No. 3864506.
- Selective precipitation of fat globule membranes of cheese whey by saponin and bile-salt.J. Agric. Food Chem. 1994; 42: 1872-1878
- Selective precipitation and removal of lipids from cheese whey using chitosan.J. Agric. Food Chem. 1995; 43: 33-37
- Milk and dried milk—Determination of calcium content. Flame atomic absorption spectrometric method. IDF Standard 154.International Dairy Federation, Brussels, Belgium1992
- Milk. Determination of nitrogen content. IDF Standard 20B.International Dairy Federation, Brussels, Belgium1993
- Whey cheese. Determination of dry matter. IDF Standard 58.International Dairy Federation, Brussels, Belgium2004
- Whey cheese. Determination of fat content. Röse-Gottlieb-gravimetric method. IDF Standard 59A.International Dairy Federation, Brussels, Belgium1986
- A simple procedure for the preparation of bovine-milk fat globule-membrane and a comparison of its composition, enzymatic-activities, and electrophoretic properties with those prepared by other methods.Agric. Biol. Chem. 1990; 54: 2845-2854
- Physicochemical properties of milk-fat emulsions stabilized with bovine milk fat globule membrane.J. Food Sci. 1991; 56: 1219-1223
- Effect of pH on the thermal denaturation of whey proteins in milk.J. Agric. Food Chem. 2000; 48: 672-679
Lehmann, H., and I.Wasen, inventors. 1990.Method of dephospholipidating whey. US Pat. No. 4897279.
- Preparation of β-lacto-globulin and β-lactoglobulin-free proteins from whey retentate by NaCl salting out at low pH.J. Food Sci. 1988; 53: 743-745
- A review and proposed nomenclature for major proteins of the milk-fat globule membrane.J. Dairy Sci. 2000; 83: 203-247
- Industrial fractionation of main whey proteins.Bull. Int. Dairy Fed. 1987; 212: 154-159
Melachouris, N., inventor. 1977. Process for the recovery of whey protein having improved solution clarity using polyphosphates. US Pat. No. 4043990.
- The PP3 component of the proteose-peptone—Extraction from unheated skim milk.Milchwissenschaft. 1990; 45: 84-87
- Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats.J. Nutr. 2004; 134: 2611-2616
- Optimization of physicochemical factors for whey clarification.Lait. 1992; 72: 405-420
- Emulsifying properties of fractions prepared from commercial buttermilk by microfiltration.J. Dairy Sci. 2004; 87: 4080-4087
- Analysis of phospho- and sphingolipids in dairy products by a new HPLC method.J. Dairy Sci. 2005; 88: 482-488
- Phospho- and sphingolipid content of selected dairy products as determined by high performance liquid chromatography coupled to an evaporative laser light scattering detector (HPLC-ELSD).J. Food Compos. Anal. 2007; 20: 308-312
- Chitosan-based coagulating agents for treatment of cheddar cheese whey.Biotechnol. Prog. 2000; 16: 1091-1097
- Sphingolipids in the chemoprevention of colon cancer.Front. Biosci. 2004; 9: 2632-2639
- Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: Implications for dietary sphingolipids and colon carcinogenesis.Cancer Res. 1996; 56: 4936-4941
- The localization and multimeric nature of component PP3 in bovine milk: Purification and characterization of PP3 from caprine and ovine milks.J. Dairy Sci. 1997; 80: 3176-3181
- Bovine milk fat globule membrane as a potential nutraceutical.J. Dairy Sci. 2005; 88: 2289-2294
- Influence of manufacturing variables on characteristics and effectiveness of chitosan products. 3. Coagulation of cheese whey solids.Biotechnol. Bioeng. 1978; 20: 1957-1966
- Characterization of protein components of natural and heat-treated milk fat globule membranes.Int. Dairy J. 2002; 12: 393-402
Article info
Publication history
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy