Abstract
Key words
Introduction
Materials and Methods
Hay Types and Sampling Procedures
In Situ and Chemical Analysis
Calculations and Statistical Analysis of In Situ Data
where Y(t) is fractional disappearance (g·g−1), λd is degradation rate (h−1), a is the fraction escaping the bag and assumed degraded at t = 0 (g·g−1), (a + b) is the potential extent of degradation (g·g−1), b is the fraction not degraded at t = 0 that is potentially degradable (g·g−1), and t is time (h). The age-dependent G2 model was chosen over the often-used age-independent models (
Statistical Analysis with Other Previously Published Degradation Data
where s2 is the pooled variance, and and nj refer to the variance and sample size of the jth forage class or maturity, respectively. Once values of standard deviations were calculated from these pooled variances, values for the coefficients of variation were then computed as with the data from
Calculation of Ruminal Digestibility and 95% Confidence Limits
where digestibilityi,j (g·g−1) is the ruminal digestibility of chemical fraction i (DM, ADF, HEM, CP) and forage class j (ECA, LCA, CSG, WSG, GL); ai,j is a for chemical fraction i and forage class j; bi,j is b for chemical fraction i and forage class j; λd|i,j is λd for chemical fraction i and forage class j; and kp is the fractional rate of passage from the rumen (h−1), set to a constant value of 0.06 h−1. This equation is conceptually analogous to the often-used equation
developed by
where ∂y/∂xk and ∂y/∂xl are the partial derivatives of y with respect to xk and xl, respectively; Δxk and Δxl are the uncertainties of xk and xl, respectively; and is the correlation coefficient between variables xk and xl. When k = l, the term and when k ≠ l, the covariance between xk and xl; from these relations and from equations [1] and [3], the corresponding uncertainty in digestibility is expressed as
where Δdigestibilityi,j is uncertainty in digestibilityi,j; Δai,j is uncertainty in ai,j; Δbi,j is uncertainty in bi,j; Δλd|i,j is uncertainty in λd|i,j; is covariance between ai,j and bi,j; is covariance between ai,j and λd|i,j; is covariance between bi,k and λd|i,j; ∂digestibilityi,j/∂ai,j is the partial derivative of digestibilityi,jwith respect to ai,j, equal to 1; ∂digestibilityi,j/∂bi,j is the partial derivative of digestibilityi,j with respect to bi,j, equal to and ∂digestibilityi,j/∂λd|i,j is the partial derivative of digestibilityi,jwith respect to λd|i,j, equal to
As mentioned below, the value of Δkp was set to 0; for simplicity, equation [4] has already been rendered with Δkp = 0.

Results
Item, g·kg DM−1 | n | Mean | Minimum | Maximum | SD |
---|---|---|---|---|---|
ECA | |||||
DM | 20 | 870 | 842 | 896 | 14 |
NDF | 20 | 431 | 329 | 502 | 45 |
ADF | 20 | 304 | 218 | 369 | 45 |
HEM | 20 | 127 | 95 | 184 | 28 |
CP | 20 | 208 | 150 | 293 | 38 |
LCA | |||||
DM | 26 | 859 | 825 | 880 | 15 |
NDF | 26 | 384 | 268 | 463 | 51 |
ADF | 26 | 265 | 195 | 354 | 43 |
HEM | 26 | 119 | 66 | 185 | 37 |
CP | 26 | 222 | 194 | 260 | 20 |
CSG | |||||
DM | 11 | 876 | 867 | 892 | 7 |
NDF | 11 | 658 | 452 | 772 | 81 |
ADF | 11 | 338 | 299 | 380 | 28 |
HEM | 11 | 320 | 123 | 392 | 73 |
CP | 11 | 123 | 60 | 174 | 33 |
WSG | |||||
DM | 4 | 867 | 845 | 886 | 17 |
NDF | 4 | 623 | 395 | 732 | 155 |
ADF | 4 | 266 | 233 | 343 | 52 |
HEM | 4 | 357 | 155 | 484 | 154 |
CP | 4 | 180 | 104 | 233 | 54 |
GL | |||||
DM | 20 | 868 | 819 | 890 | 18 |
NDF | 20 | 453 | 355 | 613 | 52 |
ADF | 20 | 304 | 241 | 384 | 36 |
HEM | 20 | 149 | 101 | 272 | 41 |
CP | 20 | 204 | 124 | 308 | 40 |
Item,, | Chemical fraction | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DM | NDF | ADF | HEM | CP | ||||||
Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | Mean | SEM | |
ECA (n = 20) | ||||||||||
λd, h−1 | 0.198 | 0.008 | 0.155 | 0.012 | 0.147 | 0.014 | 0.208 | 0.019 | 0.231 | 0.010 |
k, h−1 | 0.118 | 0.005 | 0.093 | 0.007 | 0.088 | 0.008 | 0.124 | 0.011 | 0.138 | 0.006 |
a, g·g−1 | 0.341 | 0.023 | — | — | — | — | — | — | 0.412 | 0.030 |
b, g·g−1 | 0.419 | 0.021 | 0.554 | 0.019 | 0.535 | 0.018 | 0.626 | 0.026 | 0.483 | 0.027 |
(a + b), g·g−1 | 0.760 | 0.011 | 0.554 | 0.019 | 0.535 | 0.018 | 0.626 | 0.026 | 0.894 | 0.009 |
LCA (n = 26) | ||||||||||
λd, h−1 | 0.229 | 0.008 | 0.173 | 0.009 | 0.154 | 0.010 | 0.234 | 0.017 | 0.263 | 0.008 |
k, h−1 | 0.136 | 0.005 | 0.103 | 0.005 | 0.092 | 0.006 | 0.140 | 0.010 | 0.157 | 0.005 |
a, g·g−1 | 0.387 | 0.022 | — | — | — | — | — | — | 0.442 | 0.025 |
b, g·g−1 | 0.407 | 0.018 | 0.537 | 0.016 | 0.514 | 0.015 | 0.584 | 0.025 | 0.481 | 0.022 |
(a + b), g·g−1 | 0.794 | 0.008 | 0.537 | 0.016 | 0.514 | 0.015 | 0.584 | 0.025 | 0.924 | 0.005 |
CSG (n = 11) | ||||||||||
λd, h−1 | 0.109 | 0.007 | 0.098 | 0.005 | 0.098 | 0.006 | 0.104 | 0.011 | 0.130 | 0.010 |
k, h−1 | 0.065 | 0.004 | 0.058 | 0.003 | 0.058 | 0.004 | 0.062 | 0.007 | 0.078 | 0.006 |
a, g·g−1 | 0.246 | 0.018 | — | — | — | — | — | — | 0.341 | 0.037 |
b, g·g−1 | 0.451 | 0.020 | 0.583 | 0.026 | 0.589 | 0.032 | 0.576 | 0.035 | 0.507 | 0.032 |
(a + b), g·g−1 | 0.697 | 0.018 | 0.583 | 0.026 | 0.589 | 0.032 | 0.576 | 0.035 | 0.848 | 0.035 |
WSG (n = 4) | ||||||||||
λd, h−1 | 0.093 | 0.022 | 0.071 | 0.003 | 0.058 | 0.006 | 0.071 | 0.019 | 0.091 | 0.009 |
k, h−1 | 0.056 | 0.013 | 0.043 | 0.002 | 0.035 | 0.004 | 0.042 | 0.011 | 0.054 | 0.005 |
a, g·g−1 | 0.250 | 0.016 | — | — | — | — | — | — | 0.359 | 0.068 |
b, g·g−1 | 0.421 | 0.018 | 0.567 | 0.017 | 0.535 | 0.029 | 0.515 | 0.039 | 0.424 | 0.055 |
(a + b), g·g−1 | 0.670 | 0.008 | 0.567 | 0.017 | 0.535 | 0.029 | 0.515 | 0.039 | 0.783 | 0.016 |
GL (n = 20) | ||||||||||
λd, h−1 | 0.181 | 0.012 | 0.102 | 0.008 | 0.131 | 0.010 | 0.081 | 0.027 | 0.226 | 0.012 |
k, h−1 | 0.108 | 0.007 | 0.061 | 0.005 | 0.078 | 0.006 | 0.048 | 0.016 | 0.135 | 0.007 |
a, g·g−1 | 0.311 | 0.020 | — | — | — | — | — | — | 0.394 | 0.025 |
b, g·g−1 | 0.452 | 0.021 | 0.420 | 0.017 | 0.564 | 0.021 | 0.435 | 0.019 | 0.493 | 0.025 |
(a + b), g·g−1 | 0.763 | 0.008 | 0.420 | 0.017 | 0.564 | 0.021 | 0.435 | 0.019 | 0.887 | 0.008 |
Item | Degradation parameter | ||||
---|---|---|---|---|---|
λd | k | a | b | (a + b) | |
DM | |||||
SD | 0.031 | 0.019 | 0.079 | 0.077 | 0.041 |
CV, % | 17.3 | 17.3 | 24.8 | 18.0 | 5.5 |
NDF | |||||
SD | 0.032 | 0.019 | — | 0.073 | 0.073 |
CV, % | 21.7 | 21.7 | — | 12.9 | 12.9 |
ADF | |||||
SD | 0.038 | 0.023 | — | 0.088 | 0.088 |
CV, % | 29.1 | 29.1 | — | 15.7 | 15.7 |
HEM | |||||
SD | 0.069 | 0.041 | — | 0.097 | 0.097 |
CV, % | 36.2 | 36.2 | — | 16.4 | 16.4 |
CP | |||||
SD | 0.037 | 0.022 | 0.127 | 0.111 | 0.065 |
CV, % | 19.7 | 19.7 | 32.4 | 23.4 | 10.1 |
Item, g·g−1 | Forage class | ||||
---|---|---|---|---|---|
ECA | LCA | CSG | WSG | GL | |
DM | |||||
Digestibility | 0.588 | 0.642 | 0.436 | 0.406 | 0.570 |
Lower 95% CL | 0.456 | 0.508 | 0.301 | 0.324 | 0.434 |
Upper 95% CL | 0.720 | 0.777 | 0.571 | 0.487 | 0.707 |
NDF | |||||
Digestibility | 0.288 | 0.296 | 0.225 | 0.193 | 0.296 |
Lower 95% CL | 0.157 | 0.177 | 0.113 | 0.123 | 0.192 |
Upper 95% CL | 0.420 | 0.415 | 0.337 | 0.264 | 0.401 |
ADF | |||||
Digestibility | 0.270 | 0.266 | 0.226 | 0.192 | 0.266 |
Lower 95% CL | 0.123 | 0.167 | 0.114 | 0.120 | 0.158 |
Upper 95% CL | 0.417 | 0.366 | 0.338 | 0.263 | 0.374 |
HEM | |||||
Digestibility | 0.377 | 0.370 | 0.231 | 0.217 | 0.396 |
Lower 95% CL | 0.174 | 0.134 | 0.107 | 0.045 | 0.170 |
Upper 95% CL | 0.581 | 0.606 | 0.355 | 0.389 | 0.623 |
CP | |||||
Digestibility | 0.716 | 0.761 | 0.597 | 0.513 | 0.702 |
Lower 95% CL | 0.544 | 0.640 | 0.348 | 0.240 | 0.573 |
Upper 95% CL | 0.877 | 0.882 | 0.847 | 0.787 | 0.831 |
Item, g·g−1 | Forage class | ||||
---|---|---|---|---|---|
ECA | LCA | CSG | WSG | GL | |
DM | |||||
Digestibility | 0.588, | 0.642, | 0.436, | 0.406, | 0.570, |
Lower 95% CL | 0.539 | 0.602 | 0.391 | 0.387 | 0.497 |
Upper 95% CL | 0.636 | 0.683 | 0.481 | 0.424 | 0.644 |
NDF | |||||
Digestibility | 0.288 | 0.296 | 0.225 | 0.193 | 0.296 |
Lower 95% CL | 0.173 | 0.212 | 0.175 | 0.146 | 0.209 |
Upper 95% CL | 0.404 | 0.381 | 0.275 | 0.241 | 0.383 |
ADF | |||||
Digestibility | 0.270 | 0.266 | 0.226 | 0.192 | 0.266 |
Lower 95% CL | 0.136 | 0.169 | 0.143 | 0.104 | 0.145 |
Upper 95% CL | 0.404 | 0.364 | 0.309 | 0.280 | 0.387 |
HEM | |||||
Digestibility | 0.377 | 0.370 | 0.231 | 0.217 | 0.396 |
Lower 95% CL | 0.239 | 0.258 | 0.172 | 0.011 | 0.227 |
Upper 95% CL | 0.516 | 0.483 | 0.290 | 0.423 | 0.566 |
CP | |||||
Digestibility | 0.716, | 0.761, | 0.597, | 0.513, | 0.702, |
Lower 95% CL | 0.664 | 0.722 | 0.530 | 0.436 | 0.640 |
Upper 95% CL | 0.767 | 0.801 | 0.665 | 0.590 | 0.763 |
Discussion
Chemical Composition and Degradation Parameter Means
Variation in Degradation Parameter Estimates
Calculated Digestibilities and Their 95% Confidence Limits
Analysis Where a and b Are Known with Certainty
Appendix
where and are ai,j and bi,j that is digestible (g·g−1). The terms and are explicitly defined as
and
where and are the fractions (g·g−1; ai,j or bi,j) of ai,j and bi,j that are digestible. It is assumed that the ai,j fraction is completely digestible (i.e., ), following its definition that it is instantly degraded. For the G2 model used in this report, is equal to
(
is the solution to the differential equation that describes the change of Bi,j(t) over time by digestion and passage:
References
- Modeling Ruminant Digestion and Metabolism.Chapman and Hall, London, UK1995
- Influence of in situ bag rinsing technique on determination of dry matter disappearance.J. Dairy Sci. 1990; 73: 391-397
- Methodology for estimating digestion and passage kinetics of forages.in: Fahey Jr., G.C. Collins M. Mertens D.R. Moser L.E. Forage Quality, Evaluation, and Utilization. Am. Soc. Agron. Crop Sci. Soc. Am., Soil Sci. Soc. Am., Madison, WI1994: 682-753
- Comparing relative feed value with degradation parameters of grass and legume forages.J. Anim. Sci. 2008; 86: 2344-2356
- Error Propagation in Environmental Modelling with GIS.Taylor and Francis, Bristo, PA1998
- In situ techniques for the estimation of protein degradability and postrumen availability.in: Givens D.I Owen E. Axford R.F.E. Omed H.M. Forage Evaluation in Ruminant Nutrition. CABI, Wallingford, UK2000: 233-258
- Evaluation of a mathematical model of rumen digestion and an in vitro simulation of rumen proteolysis to estimate the rumen-undegraded nitrogen content of feedstuffs.Br. J. Nutr. 1983; 50: 555-568
- A study of the artificial fibre bag technique for determining the digestibility of feeds in the rumen.J. Agric. Sci. 1977; 88: 645-650
Mertens, D. R. 1973. Application of theoretical mathematical models to cell wall digestion and forage intake in ruminants. PhD Diss. Cornell Univ., Ithaca, NY.
- Forage in Ruminant Nutrition.Academic Press, New York1990
- In situ and other methods to estimate ruminal protein and energy digestibility: A review.J. Dairy Sci. 1988; 71: 2051-2069
- Nutrient Requirements of Beef Cattle.7th updated ed. Natl. Acad. Press, Washington, DC2000
- Nutrient Requirements of Dairy Cattle.7th rev. ed. Natl. Acad. Press, Washington, DC2001
- The estimation of protein degradability in the rumen from incubation measurements weighted according to rates of passage.J. Agric. Sci. 1979; 92: 499-503
- Compartment models for estimating attributes of digesta flow in cattle.Br. J. Nutr. 1988; 60: 571-595
- Development and evaluation of empirical equations to predict feed passage rate in cattle.Anim. Feed Sci. Technol. 2006; 128: 67-83
- Relationships of forage compositions with rates of cell wall digestion and indigestibility of cell walls.J. Dairy Sci. 1972; 55: 1140-1147
- A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability.J. Anim. Sci. 1992; 70: 3562-3577
- An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements.2nd ed. University Science Books, Sausalito, CA1997
- Predicting forage indigestible NDF from lignin concentration.J. Anim. Sci. 1998; 76: 1469-1480
- Rumen balance and rates of fiber digestion.in: Proc. Cornell Nutr. Conf. Feed Manuf, Cornell University, Ithaca, NY2000: 150-166
- Standardization of in situ techniques for ruminant feedstuff evaluation.J. Anim. Sci. 1998; 76: 2717-2729
- Degradability characteristics of dry matter and crude protein of forages in ruminants.Anim. Feed Sci. Technol. 1996; 57: 291-311
Weisbjerg, M. R., P. K. Bhargava, T. Hvelplund, and J. Madsen. 1990. Anvendelse af nedbrydningsprofiler i fodermiddelvurderingen. Beret. Statens Husdyrbrugsfors. Report no. 679. National Institute of Animal Science, Foulum, Denmark.
Article info
Publication history
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy