ABSTRACT

The LacLM β-galactosidase of *Lactobacillus fermentum* K4 is encoded by 2 consecutive genes, *lacL* (large subunit) and *lacM* (small subunit), that share 17 overlapping nucleotides. Phylogenetic analysis revealed that this enzyme was closely related to other *Lactobacillus* β-galactosidases and provided significant insight into its common and distinct characteristics. We cloned both the *lacL* and *lacM* genes of *L. fermentum* K4 and heterologously expressed each in *Escherichia coli*, although the recombinant enzyme was only functional when both were expressed on the same plasmid. We evaluated the enzymatic properties of this species-specific LacLM β-galactosidase and discovered that it acts as both a hydrolase, bioconverting lactose into glucose and galactose, and a transgalactosylase, generating prebiotic galacto-oligosaccharides (GOS). The recombinant β-galactosidase showed a broad pH optimum and stability around neutral pH. The optimal temperature and Michaelis constant (*Km*) for the substrates *o*-nitrophenyl-β-D-galactopyranoside and lactose were, respectively, 40°C and 45 to 50°C and 1.31 mM and 27 mM. The enzyme activity was stimulated by some cations such as Na⁺, K⁺, and Mg²⁺. In addition, activity was also enhanced by ethanol (15%, wt/vol). The transgalactosylation activity of *L. fermentum* K4 β-galactosidase effectively and rapidly generated GOS, up to 37% of the total sugars from the reaction. Collectively, our results suggested that the β-galactosidase from *L. fermentum* K4 could be exploited for the formation of GOS.

Key words: β-galactosidase, *Lactobacillus fermentum*, lactose, galacto-oligosaccharides

INTRODUCTION

The carbohydrate-active enzymes (CAZymes) are divided among 5 functional classes: glycoside hydrolases (GH), glycosyltransferases, polysaccharide lyases, carbohydrate esterases, and carbohydrate-binding modules (Cantarel et al., 2009). The β-galactosidases (β-gal, EC 3.2.1.23) belong to 4 different GH families (GH1, GH2, GH35, and GH42; http://www.cazy.org/) and catalyze the hydrolysis and the transgalactosylation of β-D-galactopyranoside substrates such as lactose. β-Galactosidases are widely distributed throughout nature and have been characterized in animals, plants, and microorganisms, including bacteria, fungi, and yeast. The β-gal from *Escherichia coli* has been particularly well described because of the universal application of the lactose operon as a molecular tool. Furthermore, the transgalactosylation activity of β-galactosidases has gained considerable attention for its ability to produce galacto-oligosaccharide (GOS) prebiotics (Otiendo, 2010; Park and Oh, 2010).

Galacto-oligosaccharides are enzymatically produced upon lactose conversion, and they vary in saccharide chain length (between 2 and 8 monomeric units) and the types of linkages between the units. Recently, however, certain invariable characteristics were described. The saccharide chain is composed of a single terminal glucose, galactose monosaccharides, and disaccharides comprising 2 galactose units (Tzortzis and Vulevic, 2009). Industrial processes aimed at producing low-lactose or lactose-free items are concerned with undesirable GOS byproducts, for fear of unknown side effects that may stimulate symptoms of lactose intolerance. However, GOS have demonstrated beneficial effects that are distinct from lactose. The GOS can increase the numbers of *Bifidobacterium* strains and other probiotics (Onishi and Tanaka, 1995; Rabiu et al., 2001; Rastall and Maitin, 2002; Macfarlane et al., 2008) and contribute to metabolic activity of colon microbiota (Knol et al., 2005). As such, GOS have been proposed as an emerging special class of prebiotics and have gained popularity as supplemental components to

Received April 24, 2011.
Accepted September 5, 2011.
Corresponding author: gchuo58@126.com
The recombinant plasmids p22bLM, pDuet-1, and pDuetLM were transformed into L. fermentum K4 (16S rDNA GenBank accession no. EU621851; Table 1) was grown aerobically at 37°C in standard Lactobacillus de Man, Rogosa, and Sharpe broth (Difco, Detroit, MI) containing 2% lactose (wt/vol). Escherichia coli Origami B (DE3) (Table 1) was grown at 37°C under aeration in Luria-Bertani broth, supplemented with 100 μg/mL ampicillin and 30 μg/mL kanamycin for plasmid maintenance.

Gene Cloning and Vector Construction

Chromosomal DNA was extracted from *L. fermentum* K4 using the TIANamp bacteria genomic DNA extraction kit (Tiangen, Beijing, China). Amplification primers for the *lacL* and *lacM* genes encoding β-gal were designed according to the complete genome sequences of *L. fermentum* IFO 3956 (GenBank accession no. AP008937) and *L. fermentum* CECT 5716 (GenBank accession no. CP002033; Table 2). Amplification of the *lacLM* genes using Lf22b-F and Lf22b-R primers resulted in introduction of (5') NcoI and (3') XhoI restriction enzyme recognition sites, respectively. Likewise, amplification of the large subunit (*lacL*) gene using LfDuetL-F and LfDuetL-R primers introduced (5') BamHI and (3') PstI sites, and amplification of the small subunit (*lacM*) gene using LfDuetM-F and LfDuetM-R primers introduced (5') NdeI and (3') BglII sites.

Expression vectors pETDuet-1 and pET-22b(+) (Novagen, Darmstadt, Germany) were restructured with digested PCR products of *lacL* and *lacLM* genes, respectively, to generate pDuetL and p22bLM. Subsequently, pDuetL was used to construct the pDuetLM plasmid containing the complete *lacLM* genes. The restructured plasmids (Table 1) were confirmed by restriction enzyme digestion and sequencing.

Expression and Purification

The recombinant plasmids p22bLM, pDuetL, and pDuetLM were transformed into *E. coli* Origami B
(DE3) for expression. The transformants were grown at 37°C in antibiotic-supplemented Luria Bertani medium with shaking until an optical density of 0.5 at 600 nm was reached. Isopropyl-β-d-thiogalactoside (IPTG, 1 mM) was then added to the culture medium and incubation continued at 25°C for 12 h. The induced cells were then harvested by centrifugation at 12,000 × g for 10 min at 4°C.

The cell pellet was suspended with 50 mM sodium phosphate buffer (pH 6.5) and disrupted by sonication, after which the cell debris was pelleted by centrifugation (16,000 × g for 30 min at 4°C). The supernatant was then applied to a His-Trap HP column (GE Healthcare, Uppsala, Sweden) that had been pre-equilibrated with buffer A (20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole, pH 7.4). Nonspecific adsorbed materials were removed by washing with buffer B (20 mM sodium phosphate, 500 mM imidazole, pH 7.4). The recombinant β-gal was eluted with elution buffer (20 mM sodium phosphate, 0.5 M NaCl, 20 mM imidazole, pH 7.4). The active fractions were desalted and collected by ultrafiltration with Amicon Ultra-4 molecular weight marker (TaKaRa, Shiga, Japan) after visualization with Coomassie Brilliant Blue staining.

Enzyme Assays

β-Galactosidase activity was determined using o-nitrophenyl-β-d-galactopyranoside (oNPG) and lactose as the substrates. The oNPG reaction was carried out in 100 μL of 50 mM sodium phosphate buffer (pH 6.5) containing 40 μL of 20 mM oNPG and 10 μL of diluted enzyme solution. After 10 min of incubation at reaction temperature, 100 μL of 1 M Na$_2$CO$_3$ was added to terminate the reaction. Activity of β-gal was determined by the amount of o-nitrophenol (oNP) released, as measured by absorbance at 405 nm on a microplate reader (Bio-Rad Laboratories, Hercules, CA). One unit of oNPG activity was defined as the amount of enzyme releasing one micromole of oNP per minute under the described conditions.

The lactose substrate reaction was initiated by adding 50 μL of diluted enzyme solution to 150 μL of 50 mM sodium phosphate buffer (pH 6.5) with 200 mM lactose. After 10 min of incubation at reaction temperature, the reaction was stopped by heating at 100°C for 5 min. Activity of β-gal was determined by measuring the amount of d-glucose released using a commercially available glucose oxidase kit (Biosino, Beijing, China) and reading absorbance at 490 nm. One unit of lactase activity was defined as the amount of enzyme releasing one micromole of d-glucose per minute under the given conditions.

Characterization of the Recombinant β-gal Enzyme

pH and Temperature Dependence of Activity and Stability. Both oNPG and lactose assays were variably performed so as to determine the optimum pH and temperature of the respective enzyme activity. The optimum pH was determined for the range of pH from 2.5 to 11.0 by using 50 mM McIlvaine buffer (pH 2.5–5.5), 50 mM sodium phosphate buffer (pH 5.5–8.0), or 50 mM glycine-NaOH buffer (pH 8.5–11.0). Stability was determined by measuring the respective enzyme activity over a range from 20 to 70°C (Juajun et al., 2011). All other assay conditions remained unchanged.

The release of oNP from oNPG was measured to determine pH and thermal stability. For determination of pH stability, the enzyme samples were diluted with buffers of various pH values and incubated at 4°C for 3 d. Temperature stability was determined by incubating at various temperatures in a range from 4 to 55°C for more than 120 min. The samples were separated at the desired time intervals, and the residual activity was measured under standard assay conditions.
Determination of Kinetic Parameters. Kinetic parameters were evaluated by performing the oNPG and lactose assays at 30°C using 50 mM sodium phosphate buffer (pH 6.5) with substrate concentrations ranging from 0.5 to 22 mM for oNPG and from 1 to 600 mM for lactose (Nguyen et al., 2006).

Effect of Various Cations and Reagents. To study the effect of various cations and reagents on the activity of β-gal, the enzyme samples were assayed with aqueous solution containing 20 mM oNPG at the optimum temperature for 10 min in the presence of various cations and reagents added at a final concentration of 5 mM, or at 15% (vol/vol) for ethanol and glycerol. The measured activities were compared with the activity of the enzyme solution under the same conditions but without added cations or reagents.

Formation of GOS

Cell extracts were incubated for 48 h at 45°C in 50 mM sodium phosphate buffer (pH 6.5) with either lactose solution (20% or 40%, wt/vol) or milk containing 5% (wt/vol) lactose, respectively. Samples were withdrawn at certain time intervals and immediately heated at 100°C for 5 min to inactivate the enzyme. The compositions of GOS mixtures were analyzed using thin-layer chromatography (TLC) and an HPLC system. The TLC was carried out on silica-gel 60 plates.
(Merck, Darmstadt, Germany) in a solvent composed of n-butanol:n-propanol:ethanol:water (2:3:3:2, vol/vol/vol/vol), as described previously (Splechtna et al., 2006). For further analysis of GOS, the samples were diluted appropriately, filtered, and injected into the HPLC system on a column of Aminex HPX 87H (Bio-Rad Laboratories) at 50°C using 5 mM H₂SO₄ solution as the mobile phase (0.3 mL/min) and refractive index detection. The yield of GOS was calculated by the previously described method (Jørgensen et al., 2001).

Nucleotide Sequence Accession Numbers

The genes of lacL and lacM were submitted to the GenBank database under accession numbers HQ727550 and HQ727551, respectively.

RESULTS

Sequence Analysis of β-gal from L. fermentum K4

The *L. fermentum* K4 genome sequences of lacL and lacM share an overlapping region of 17 nucleotides.
Sequence alignment by the basis local alignment tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi) revealed that these 2 genes have 99.81% identity to those published from \textit{L. fermentum} strains IFO 3956 and CECT 5716. Based on the deduced amino acid sequences of the β-gal large subunit LacL and small subunit LacM, the theoretical molecular weights were estimated to be 72.29 and 35.8 kDa, respectively (http://au.expasy.org/tools/pi_tool.html). The \textit{L. fermentum} K4 β-gal resembles the GH2 family members that are classified as LacLM type as opposed to LacZ type (Schwab et al., 2010). The potential active sites in \textit{L. fermentum} K4 LacLM were identified by comparison with those defined for the other major LAB by using the CLC sequence viewer (Figure 1A) and WebLogo (Figure 1B; http://weblogo.berkeley.edu/logo.cgi). The \textit{E. coli} LacZ acid/base and nucleophile regions are located at residues Glu461 and Glu537 (Cupples et al., 1990; Gebler et al., 1992; Henriassat and Bairoch, 1993; Hung et al., 2001; Matthews, 2005). These regions were located in \textit{L. fermentum} K4 LacLM at Glu466 (Figure 1Ba) and Glu534 (Figure 1Bb) and exhibited remarkably high identity with the corresponding ones from \textit{E. coli} LacZ. However, when the entire AA sequence of \textit{L. fermentum} K4 LacLM was compared with that of \textit{E. coli} LacZ, only 31.66% identity was observed.

Phylogenetic trees were constructed for LacL and LacM of \textit{L. fermentum} K4 using MEGA 5 software (www.megasoftware.net) with the bootstrap method and using all of the putative β-galactosidases discovered thus far in \textit{Lactobacillus} spp. and some of the LAB strains that are prevalent in food manufacturing. Figure 2 shows the LacL phylogenetic tree of \textit{L. fermentum} K4. Both LacL and LacM (data not shown) were most closely related to the β-gal from other \textit{Lactobacillus} spp.

Expression of β-gal from \textit{L. fermentum} in \textit{E. coli}

The β-gal LacLM from \textit{L. fermentum} K4, which is encoded by the lacLM operon, was amplified and cloned into pET-22b(+), resulting in the p22bLM expression vector. To study the detailed characteristics of this strain-specific β-gal, the large subunit gene \textit{lacL} was cloned and expressed as an IPTG-inducible recombinant protein (as described in Materials and Methods). Sodium dodecyl sulfate-PAGE analysis of the β-gal samples at various steps of the expres-
The purified recombinant β-galactosidase protein was determined to be more stable at pH 8.0 after 3 d of incubation at 4°C (Figure 5A), which was distinct from the optimal pH. The protein was also found to retain about 40% of its enzyme activity in neutral pH after incubation for 72 h. Thermal stability was observed in the range of 10 to 20°C (Figure 5B), and 35 to 50% of the maximum activity was retained after incubation in the temperature range for 2 d (data not shown). Incubation at 55°C inactivated the enzyme within 20 min (Figure 5B).

Effect of Various Cations and Reagents

The activity of *L. fermentum* K4 recombinant β-gal was enhanced upon exposure to 15% (wt/vol) ethanol and 5 mM Na+, K+, and Mg2+ (Figure 6). The reagent dithiothreitol had almost no effect on enzymatic activity. The activity was moderately inhibited by glycerol, 2-mercaptoethanol, and urea, and was clearly inhibited by Fe2+, Mn2+, and Zn2+. Glutathione, Cu2+, and Fe3+ completely deactivated the enzyme. Thus, the cations K+ and Mg2+ were considered and applied as cofactors to enhance the efficiency of *L. fermentum* β-gal.

Bioconversion of Lactose

Certain microbial β-gal can mediate the transfer of their hydrolyzed galactose products onto lactose to yield GOS (Panesar et al., 2006; Park and Oh, 2010). The β-gal LacLM from *L. fermentum* K4 exhibits such transgalactosylation activities. During lactose conversion, we observed that the transgalactosylation reaction was rapidly initiated, as demonstrated by the formation of GOS in 0.5 h (Figure 7A). The weight of GOS as a percentage of the total sugars in the reaction mixture was determined by HPLC. The value reached a maximum of 37% when the incubation involving 50 mM sodium phosphate buffer (pH 6.5) at 45°C with 40% (wt/vol) lactose solution was extended to 9 h. Beyond 9 h, however, hydrolysis prevailed over transgalactosylation, and the total amounts of GOS trended downwards, accompanied by an increase in galactose content (Figure 7B). When a lower lactose content solution was used (as in milk), the amount of bioconverted GOS was less.
Likewise, as the lactose concentration was increased in the reaction solution, more and larger GOS were produced (Figure 7). This result was consistent with that from a previous report (Albayrak and Yang, 2002).

DISCUSSION

The β-gal from *L. fermentum* strain K4 was cloned, expressed, purified, and analyzed to determine its distinctive enzymatic properties and indicate its potential as a manipulable molecular tool for bioconversion of GOS. The recombinant β-gal showed a broad pH optimum and stability around neutral pH (6.5–8.5), preferably utilized lactose between 45 and 50°C, and was quickly inactivated at 55°C. The cations Na⁺, K⁺, and Mg²⁺ improved enzymatic activity, consistent with findings from previous studies on other LacLM-type β-gal (Nguyen et al., 2006, 2007; Iqbal et al., 2010). The effect of Mn²⁺ was especially noteworthy, because it increases β-gal activity from both *L. fermentum* K4 and *Lactobacillus plantarum* WCFS1 (Iqbal et al., 2010), but inhibits that from *Lactobacillus acidophilus* (Nguyen et al., 2007). Another interesting finding was that ethanol was a stimulator of β-gal LacLM enzyme, a finding yet to be reported with any other of the LAB. This may be a reflection of the relatively broad range of environmental niches in which *L. fermentum* is known to function; it is possible that a symbiotic relationship evolved with other ethanol-producing strains, such as *Saccharomyces cerevisiae* or *Zymomonas mobilis*. In addition, the types and total amounts of GOS that were produced by the *L. fermentum* LacLM were mediated by the concentration of lactose solution, not the temperature or pH.

The β-gal enzyme is known to catalyze the hydrolysis and transglycosylation of its substrates through a double-displacement reaction involving both galactosylation and degalactosylation steps (Brás et al., 2010). The preference for transglycosylation activity can be enhanced by exposure to high concentrations of lactose, as demonstrated by measuring the difference between glucose and galactose products that arise from specific reaction conditions. In our study, we observed that the greatest yield of GOS was achieved when the differ-

![Figure 6. Effect of various cations and reagents on the activity of β-galactosidase from Lactobacillus fermentum K4. DTT = dithiothreitol.](graphic)
-GALACTOSIDASE OF LACTOBACILLUS FERMENTUM 5819

ence value was greatest. Fortunately, the recombinant LacLM was able to bioconvert GOS from milk lactose (which exists at very low concentrations).

As mentioned above, the β-gal from L. fermentum K4 is composed of a large subunit (LacL) and a small subunit (LacM) and belongs to the GH2 family of carbohydrate-active enzymes. Most Lactobacillus strains contain the LacLM type β-gal, and some LAB that are involved in fermentation (particularly in the food industry) pertain to the LacZ type, such as Bifidobacterium spp., Lactococcus spp., and Streptococcus spp. (Hung et al., 2001; Jørgensen et al., 2001; Hung and Lee, 2002; Lamoureux et al., 2002; Hsu et al., 2007). Phylogenetic analysis revealed that both the large subunit LacL and small subunit LacM of L. fermentum K4 β-galactosidase had high homology with most of the β-galactosidase from other Lactobacillus spp. It should be noted that the probiotic Lactobacillus rhamnosus GG contains the β-gal ebga (CAR86365) and bgaC (CAR86231), which belong to GH2 and GH42, respectively, which is distinct from the other Lactobacillus spp.. Furthermore, β-gal from the genus Pediococcus were also represented in the LacLM group. In general, 4 subgeneric groups were generated based on the phylogenies of Lactobacillus. Lactobacillus fermentum was classified into group B, which contained some Lactobacillus spp. strains, such as Lactobacillus salivarius, L. plantarum, Lactobacillus reuteri, Lactobacillus brevis, Lactobacillus antri, and even Pediococcus pentosaceus (Claesson et al., 2008).

Through this study, we were able to confirm that the L. fermentum β-gal would be functionally activated in its complete form, including both the small subunit LacM and the large subunit LacL. Because LacL was not active in the absence of LacM, we presumed that LacM might be the unit essentially mediating the activity of LacLM type β-gal. Interestingly, the functional LacM subunit from L. antri DSM 16041 β-gal (EEW52689) is only 229 AA long, unlike most of the other Lactobacillus β-gal that are approximately 320 AA long. This suggested to us that L. fermentum β-galactosidase activity may be manipulable by altering (truncating) the LacM sequence. This strategy, if successful (experiments ongoing in our laboratory), would be a useful method for customizing the enzyme according to specific industrial needs. In addition to the lower lactose concentration, the inhibition of glucose seriously restricted the production of GOS, and we presume that inhibition could be reduced through immobilization of the substrate or structural modification of the enzyme at the product-binding site (Kim et al., 2004; Mateo et al., 2004; Park and Oh, 2010). Thus, the findings from this study will aid future research focused on enhancing the transgalactosylation activity of β-gal and developing more efficient enzymes to generate high yields of GOS.

ACKNOWLEDGMENTS

Financial support of this work was supported by Program for Changjiang Scholars and Innovative Research Team in Northeast Agricultural University (IRT0959), Harbin, China.
REFERENCES

