Holstein calves, 2 to 5 d of age initially (42.8 ± 2.1 kg of body weight) from a single dairy farm, were transported 3.5 h to southwest Ohio. Calves were housed in 1.2 × 2.4 m individual pens with wire mesh sides within a curtain sidewall barn with no added heat. Pens were bedded with long straw and fed 0.68 kg (as-fed) of milk replacer powder reconstituted to a 14% dry matter daily in 2 equal meals at 0615 and 1600 h. Starter and water were offered ad libitum. Calves were weaned at 42 d with measurements made until d 56. Ten calves per period in 4 periods of the year (spring/summer, SS; summer, S; fall, F; winter, W) were used to measure standing and lying behavior using an electronic data logger attached to the medial side of the right rear leg of calves. In period SS, loggers were attached from d 2 to 6, 10 to 17, 25 to 32, and 33 to 56. In periods S, F, and W, the logger was attached from d 4 to 56. Standing time was estimated from 5-min interval recordings. Data from the first 2 d after attachment were not used. Standing time did not differ among periods and averaged 303 ± 52.8 min/d. These measurements were low, and approximately 2 h/d less than other measurements found in the literature. Standing time differed among sections of the day and was greatest during a.m. and p.m. feeding, intermediate during midday and evening, and least at night. No interaction of period of year by time of day was noted. Standing time increased by 0.52 ± 0.063 min/d with increasing age of calf (approximately 26 min per 7 wk). Variances of standing time within period of year due to calf and variances across periods were compared and did not differ. In summary, calves averaged approximately 300 min/d standing, and time standing increased by approximately 0.5 min/d with age and did not differ with period of year.

Key words: standing time, behavior, season, calf

Calf housing, welfare, and behavior have been studied in regard to housing, bedding, and feeding systems and are important for optimal performance, health, and humane treatment of the calf (McFarlane et al., 1988; Chua et al., 2002; Jensen, 2004; Panivivat et al., 2004; von Keyserlingk et al., 2006). These studies have used different techniques to quantify time spent feeding, standing, lying, and performing natural and unnatural behaviors. Most techniques involved visual monitoring of calves with or without video surveillance. Automated devices and methodologies exist to quantify standing and lying times of cattle (Ito et al., 2009; Ledgerwood et al., 2010) but have not been implemented in calf research or used over long periods (weeks or months). We are unaware of mechanical or structural differences in body confirmation to indicate that methodologies that have proven useful in mature cattle are unacceptable in neonatal calves. Standing requires substantially more energy than lying (Schrama et al., 1993; Labussière et al., 2008). Ambient temperatures above or below the thermoneutral range of calves increases energy required for maintenance or heat production (NRC, 2001), whereas loss of body heat increases during standing, compared with lying, in calves (Schrama et al., 1993).

This study was designed to use a data logger to measure standing time of calves over long periods and during different periods of the year. The objective was to estimate how standing time changed within day and with increasing age. Additionally, an objective was to determine if standing time varied by period of the year.

Holstein bull calves (2 to 5 d of age) from a single dairy farm were transported 3.5 h to the Nurture Research Center in southwest Ohio and received at approximately 1100 h. Calves were housed in 1.2 × 2.4 m individual pens with wire mesh sides within a curtain sidewall barn with no added heat; the pens were bedded with straw. A 27% CP (whey protein), 17% fat milk replacer (MR) powder (DM basis; Table 1) was reconstituted with warm water to 14% solids. Calves were fed 0.68 kg of as-fed powder via this solu-
tion daily in 2 equal meals at 0615 and 1600 h. Calves were completely weaned by d 42 by only feeding MR at 0615 h on d 40, 41, and 42. Calves were fed a textured starter (20% CP on DM basis); starter and water were offered ad libitum. Calves were cared for by acceptable practices as described in the Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching (FASS, 2010).

Ten calves (42.8 ± 2.1 kg of initial BW) per period in 4 periods of the year (spring/summer, SS; summer, S; fall, F; winter, W; Table 1) were used to measure standing and lying behavior using an electronic data logger (Hobo Pendant G Acceleration Data Logger, Onset Computer Corp., Pocasset, MA) attached to the medial side of the right rear leg of calves. A plastic identification bracelet (Nasco, Fort Atkinson, WI) was attached to the leg and the logger was taped (Vet Wrap Co-Flex, Andover Coated Products Inc., Salisbury, MA) to the bracelet. Tape was then applied over the logger and bracelet. In period SS, the loggers were attached from d 2 to 6, 10 to 17, 25 to 32, and 33 to 56, and set to record every 1 min. Data from the first 2 d of each recording period were not used to allow the calf to acclimate to the logger. In periods S, F, and W, the logger was attached on d 4 and set to record data every 5 min from d 6 to 56. Data were managed in 1-min intervals or with adjustments for a 5-min recording interval and categorized either as standing or lying similar to the description (Ito et al., 2009).

The data recorders have the ability to store approximately 7 d of data when recording each minute. Because we wanted to record for longer periods of time we evaluated recording at 5-min intervals instead of every minute. For period SS, standing time was recorded by calf in 1-min intervals and these data were separated into 5 sets by 5-min intervals to be calculated. Standing time by 1-min intervals was compared with the 5 sets of 5-min intervals within each calf. Correlations within individual calves ranged from 0.97 to 0.99 with an average of 0.98. Estimated standing time was 9 min/d (3%) greater when using 1-min intervals rather than 5-min intervals. Ledgerwood et al. (2010) demonstrated that intervals from 0.1 to 5 min were valid for estimating lying time with this brand of data logger. Additionally, we deleted the first 2 d of data after attachment of the logger in case attachment created initial abnormal behavior, another reason we wanted to leave the recorders attached throughout the trial.

Hours of the day were grouped into 5 arbitrary periods of the day: feeding MR in the morning (3 h from 0500 to 0800 h), midday (7 h from 0800 to 1500 h), feeding MR during the afternoon (3 h from 1500 to 1800 h), evening (4 h from 1800 to 2200 h), and night (6 h from 2200 to 0400 h). We determined these periods based on: human interaction of feeding MR; midday periods when calves were watered, fed starter, bedded, measured for growth, and cared for in other ways; evening periods after caretakers left the nursery yet daylight was present during warmer months; and night.

Data were analyzed using the MIXED procedure in SAS (Version 8, SAS Institute Inc., Cary, NC) as a completely randomized design with a 4 (periods of year) × 5 (sections of day) factorial arrangement. The repeated measures mixed model was the following:

\[Y_{ijkl} = \mu + P_i + S_j + PS_{ij} + A_k + PA_{ik} + SA_{jk} + PSA_{ijk} + \varepsilon_{ijkl}, \]

where \(Y_{ijkl} \) is observed response; \(\mu \) is the mean; \(P_i \) is fixed effect of period of year \(i \); \(S_j \) is fixed effect of section of day \(j \); \(PS_{ij} \) is the interaction of period \(i \) and section of day \(j \); \(A_k \) is the repeated effect of age (interval measured) \(k \) that was modeled as an auto-regressive type 1 covariance matrix within experimental unit; \(PA_{ik} \), \(SA_{jk} \), and \(PSA_{ijk} \) are the interactions of period of year \(i \), section of day \(j \), and age \(k \); and \(\varepsilon_{ijkl} \) is residual error, calculated using the Kenward-Rogers procedure for determining degrees of freedom. Means were separated using an least significant difference (LSD) means separation procedure. All data are reported as LSM.

The experimental unit was calf. Significant differences were considered at \(P < 0.05 \).

Standing time did not differ among periods of year (SS, S, F, and W) and averaged 303 ± 52.8 min/d. Standing time did differ among sections of the day, being greatest during a.m. and p.m. feeding, intermediate during midday and evening, and least at night (\(P < 0.001 \); Figure 1). No interactions of period of year with section of day (\(P > 0.2 \)) were noted. Standing time

<table>
<thead>
<tr>
<th>Period</th>
<th>Start date</th>
<th>End date</th>
<th>Temperature, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring/summer (SS)</td>
<td>June 4</td>
<td>July 27</td>
<td>24 (13 to 36)</td>
</tr>
<tr>
<td>Summer (S)</td>
<td>August 10</td>
<td>October 5</td>
<td>22 (11 to 38)</td>
</tr>
<tr>
<td>Fall (F)</td>
<td>October 19</td>
<td>December 14</td>
<td>7 (–18 to 22)</td>
</tr>
<tr>
<td>Winter (W)</td>
<td>December 28</td>
<td>February 22</td>
<td>1 (–15 to 15)</td>
</tr>
</tbody>
</table>
might have been expected to be less during cold weather to conserve body heat and greater during hot weather to dissipate body heat, but this was not detected.

Standing time increased \((P < 0.02)\) with age by 0.52 ± 0.063 min/d (approximately 26 min per 7 wk). Panivivat et al. (2004) reported similar times standing as we observed; however, as their calves aged from 1 to 6 wk, time standing increased by approximately 110 min/d. Their measurements were made with 15-min intervals (personal observations) between 0900 and 0100 h the next day (16 h), one d/wk. von Keyserlingk et al. (2006) used video recording and reported that calves stood 367 min/d when offered milk ad libitum. Phillips (2004) used video recording and reported standing times of 359 to 525 min/d in calves bedded with straw with individually or group housed calves. Others using video have reported 80 min or more daily average standing time than the standing time we observed (McFarlane et al., 1988; Chua et al., 2002; Jensen, 2004; Camiloti et al., 2012). In each of these reports, video was recorded for 24- to 48-h intervals during limited periods of the trials; one included the extensive monitoring periods used in the current study.

Variance among individual calves within a period of the year was calculated by averaging, per period, the absolute difference between individual calf standing time and period mean standing time, yielding one variance due to calf within a period. Variance among period means was calculated by averaging the absolute difference between period standing times and the overall standing time. The 4 variances within period and 4 variances across periods were compared as a completely randomized design. Variances of standing time within period of the year due to calf and variances across periods of the year were not different (each were 29 min ± 6.4 min; \(P > 0.94\)).

In summary, intensive measurements of standing time in Holstein calves less than 2 mo of age found that calves averaged approximately 300 min/d standing. Time standing increased approximately 0.5 min/d with age. Standing time did not differ among periods of the year. Standing time during the day was greatest during a.m. and p.m. feeding, intermediate during midday and evening, and least at night. Variation of standing time within period due to calf and variation across periods were not different.

REFERENCES

Figure 1. Minutes standing (y-axis) per hour of the day (x-axis) in 4 groups of 10 calves in 4 periods (seasons) of the year. Hours were grouped (brackets) as a.m. feeding, p.m. feeding, midday, evening, and night for statistical purposes. Means with different letters differ, \(P < 0.05\), SEM = 2.2 min/h.

