Short communication: Flooring preferences of dairy cows at calving

M. Campler,*† L. Munksgaard,† M. B. Jensen,† D. M. Weary,* and M. A. G. von Keyserlingk†

*Animal Welfare Program, Faculty of Land and Food Systems, University of British Columbia, 2357 Mall, Vancouver, British Columbia, V6T 1Z4, Canada
†Department of Animal Science, Aarhus University, PO Box 50, 8830 Tjele, Denmark

ABSTRACT

The present study investigated the flooring preference during the 30 h before parturition in Holstein dairy cows housed individually in a maternity pen. Seventeen multiparous cows were moved, on average, 2 d before expected calving date into an individual maternity pen with 3 different flooring surfaces: 10 cm of sand, pebble-top rubber mats, or concrete flooring, each covered with 15 cm of straw. Calving location, lying time, and total time and number of lying bouts on each of the floor types were recorded during 2 periods: precalving (24 to 29 h before calving) and at calving (0 to 5 h before calving). Ten cows calved on sand, 6 on concrete, and 1 on the rubber mat. Lying bouts increased during the hours closest to calving, regardless of flooring. The number of lying bouts did not differ between flooring types precalving but cows had more lying bouts on sand and concrete compared with rubber at calving. Cows spent more time lying down on sand and concrete compared with rubber precalving, but lying times did not differ between treatments at calving. Cows that calved on sand spent more time lying on sand at calving compared with the other 2 flooring types. Cows that calved on concrete did not show a flooring preference at calving. These results indicate that rubber mats are the least preferred by dairy cows in the maternity pens, even when covered with a deep layer of straw.

Key words: cow comfort, preference test, lying time, parturition

Short Communication

Compared with free-ranging ungulates, indoor-housed dairy cows have few options as to where they give birth. One common practice is to separate cows from the herd upon signs of parturition to an individual maternity pen (Proudfoot et al., 2013). Common flooring surfaces in maternity pens include sand, grooved concrete, and rubber mats or mattresses, and a thick layer of straw or other organic material is often added to the flooring surface (Cook and Nordlund, 2004). The majority of research on cow comfort has focused on the lactating cow (von Keyserlingk et al., 2009) but little work has focused on the time around parturition. Previous studies have shown that lactating cows prefer to lie down on thick (Tucker et al., 2009), soft (Tucker and Weary, 2004), and dry (Reich et al., 2010) bedding materials and that sand or straw beddings are preferred over rubber mats or mattresses (Calamari et al., 2009). Cows also show longer lying times and a higher number of transitions between lying and standing on mattresses (Haley et al., 2001) and rubber mats (Rushen et al., 2007) compared with concrete flooring. The flooring in the maternity pens may be especially important at the time of calving, as cows frequently change position in the hours leading up to parturition. In the 2 d before calving, cows double the number of transitions between lying and standing to approximately 22 standing bouts in the 24 h before calving (Huzzey et al., 2005). The majority of this increase occurs in the 6 h before calving (Miedema et al., 2011; Jensen, 2012). Changing position from lying to standing (or the reverse) may be hazardous or unpleasant on a hard and slippery surface (Rushen et al., 2007) especially at the time around calving. The objective of this study was to investigate lying behavior and flooring preferences of dairy cows in the hours leading up to calving.

Seventeen multiparous cows (parity = 2.8 ± 0.4, mean ± SE) were used in this study that was conducted from late June to mid October 2012 at the University of British Columbia Dairy Education and Research Centre (Agassiz, BC, Canada). Before testing, all cows were housed in a pen with 12 freestalls with a mattress base covered with approximately 5 cm of washed river sand. Cows entered and exited the pen depending upon their expected calving date and were monitored daily by experienced herdsmen for injuries or indications of lameness. Cows that were classified as injured or lame were not used in the study. The indoor temperature during the study was registered by sensors (HOBO Pro v2 Temp/Ext Temp logger; Measurement Systems Ltd., UK), with an average (±SD) temperature of 18.1

Received July 12, 2013.
Accepted October 11, 2013.
*Corresponding author: nina@mail.ubc.ca
± 5.6°C, a minimum of 9.2°C, and a maximum of 34.1°C. All methods used to collect data were approved by the University of British Columbia’s Animal Care Committee, which follows the standards outlined by the Canadian Council on Animal Care (CCAC, 2009).

Two days before the expected calving date, or upon physical signs of approaching calving (e.g., enlarged and tense udder or loose pelvic ligaments), cows were moved from the close-up pen into a test pen (8.1 × 3.7 m). The test pen was divided into 3 separate equally sized areas (each 2.7 × 3.7 m) with different flooring: (1) grooved concrete, (2) an 18-mm-thick pebble top rubber mat (North West Rubber Ltd., Abbotsford, BC, Canada), or (3) 10 cm of washed river sand. All 3 treatments were covered with a 15-cm layer of straw. Wooden boards (3.7 m × 5.1 cm × 10.2 cm) were secured to the floor separating the 3 flooring surfaces and associated bedding, preventing cows from lying across flooring types. Cows had free access to all flooring types within the test pen until they calved. The test pen was cleaned twice per day and straw was replenished and evenly spread out when the cow was fed. Flooring materials were repositioned in between every third cow to eliminate any confounding effect of location.

One long side of the test pen was gated to provide a partial view of cows housed in nearby pens. Water was provided ad libitum from a portable self-filling bowl and feed was delivered twice daily in a portable feed trough at approximately 0700 and 1600 h. To prevent feed and water to act as a confounding factor, both were repositioned separately between treatments at each feed delivery.

Cow location and lying times were recorded using a surveillance camera (CCTV, WV-BP334; Panasonic Corp., Osaka, Japan), installed on one short side 3 m over the test pen, that was connected to a DVR unit (GeoVision Inc., Taipei, Taiwan). Red floodlight bulbs (NOMA, 100W; Trileaf Distribution, Toronto, ON, Canada) facilitated video recordings at night.

Calving location, lying location as well as lying time, total time (standing and lying time), and number of lying bouts on each floor type were measured. Previous work (Proudfoot et al., 2009; Miedema et al., 2011; Jensen, 2012) has shown that behavioral changes associated with calving peak within 6 h of parturition. We split our data into two 6-h periods: precalving (24 to 29 h before calving) and calving (0 to 5 h before calving). Four out of the 17 cows calved within 30 h of being moved into the maternity pen and thus were not included in the precalving analysis. A single trained observer recorded all behaviors from continuous video recordings (GeoVision 1480 digital recorder; USA Vision Systems Inc., Irvine, CA).

To test if calving location varied with flooring (i.e., sand, rubber mats, or concrete) we used a chi-squared goodness-of-fit test. This same test was used to test if calving location varied with location within the pen, regardless of flooring (i.e., left, right, or mid position). To test if lying behavior also varied with treatment and period relative to calving (i.e., precalving or calving), differences in lying time and number of lying bouts were analyzed by a Friedman 2-way ANOVA (Siegel and Castellan, 1988), with results presented as medians (and 25th and 75th quartiles). Where treatment differences were found, a Wilcoxon matched-pairs signed-rank test (Siegel and Castellan, 1988) was used for a post-hoc pairwise analysis. Finally, to test if a cow’s preference for the different flooring types before calving varied in relation to the flooring they chose to calve upon, total time (lying + standing) and lying time spent on each flooring type were compared for cows calving on each of the flooring types using a Friedman 2-way ANOVA (Siegel and Castellan, 1988). Significance was declared at P < 0.05.

Ten cows calved on sand versus just 1 cow on the rubber mats (df = 1, χ² = 5.66; P < 0.05); 6 cows calved on concrete, a value not statistically different from either the sand or rubber. We found no effect of location (left, right, or mid position); 8 cows calved in the middle, 5 calved on the left side, and 4 calved on the right side of the pen. This preference for sand is in contrast with results from Manninen et al. (2002), who found that lactating cows preferred freestalls with concrete and a thick layer of straw over sand and rubber mats. Our decision to bed each of the surfaces with straw was in response to previous work showing the importance of dry bedding (Fregonesi et al., 2007). The straw layer itself may have been thick and soft enough to accommodate a high degree of lying comfort across all floors at the time of calving. Jensen et al. (1988) observed a weak overall preference for mattresses covered with a thin layer of straw compared with concrete covered with a thick layer of straw, but only when the straw was old or straw levels were low in the concrete stalls. Drissler et al. (2005) reported that lying time decreased with decreasing sand depth. Although straw in the current study was replenished and leveled out twice per day, its depth at the time of calving may have influenced the cows’ decisions and should be considered in future studies. It should be noted that all cows had previous
experience with sand bedding, as well as with both con-
crete and rubber as standing surfaces. The cows’ low
preference for rubber flooring in the current study may
also have been due to unfamiliarity with this surface
in the lying area. Previous experience has been shown
to influence the results of a preference test (Norring et
al., 2008). However, cows were not familiar with lying
on concrete, so familiarity cannot fully explain these
results. The low sample size may also have affected the
outcome of this study.

The number of lying bouts did not differ between
flooring types in the precalving period but cows lay
down more often on sand compared with the rubber
mats during the calving period (Table 1). No effect of
location on the number of lying bouts was observed
in either period. Our results agree with Huzzey et
al. (2005) and Jensen (2012), who also found an in-
creased number of lying bouts close to parturition. The
higher number of transitions on sand may have been
due to better traction on this surface compared with
rubber mats (Cook and Nordlund, 2009) or concrete
(Telezhenko and Bergsten, 2005).

Cows spent more time lying on sand and concrete
compared with rubber mats precalving, but this differ-
ence was no longer evident during the calving period.
During the calving period, cows tended to spend the
majority of time lying on sand. This result may have
been affected by an increase in restlessness that occurs
close to parturition. We found no effect of location on
lying time in either period.

Cows that chose to calve on sand spent more time
overall on sand compared with rubber [Wilcoxon test
statistic (W) = 27.5, Wilcoxon standard normal value
(z) = −2.395; P = 0.002; n = 10, adjusted for ties;
Figure 1A] or concrete (W = 27.5, z = −2.4973; P = 0.012; n = 10, adjusted for ties; Figure 1B) and also
had longer lying times on sand compared with rubber
(W = 27.5, z = −2.803; P = 0.005; n = 10, adjusted for
ties) and concrete (W = 27.5, z = −2.497; P = 0.012; n = 10, adjusted for ties) in the calving period. No differ-
ence in time spent overall (χ² = 2.33, df = 2; P > 0.05;
n = 6, adjusted for ties) or lying (χ² = 1.33, df = 2; P >
0.05; n = 6, adjusted for ties) on the different flooring
materials was observed for cows that chose to calve on
concrete. Only 1 cow chose to calve on rubber, so this
treatment was not included in this analysis. Thickness
and compressibility of the bedding has been shown to
affect lying behavior (Tucker and Weary, 2004; Tucker
et al., 2009). We suggest that future studies investigate
flooring preferences in combination with variable bed-
ning thickness in the maternity pen to determine how
these factors may interact.

In conclusion, cows preferred sand to rubber mats
during calving in a free-choice setting. Lying times
and lying bouts occurred mainly on sand and concrete
flooring during the study, suggesting that cows avoid
rubber flooring in the maternity pen.

ACKNOWLEDGMENTS

The authors are grateful to the farm staff and
students who helped throughout the course of this
experiment. M. Campler gratefully acknowledges the
University of British Columbia (UBC, Vancouver, BC,
Canada) Graduate Student International Research Mo-
bility Award, the Danish Cattle Federation (Aarhus,
Denmark); the Danish Ministry of Food, Agriculture
and Fisheries (Copenhagen, Denmark); Aarhus Univer-
sity Research Fund (Tjele, Denmark); and the Danish
Agricultural Research Fund (Hudefonden). The UBC
Animal Welfare Program is funded through the Natural
Sciences and Engineering Research Council of Canada
(NSERC, Ottawa, ON, Canada) Industrial Research
Chair program, with industry contributions from the
Dairy Farmers of Canada (Ottawa, ON, Canada),
Westgen Endowment Fund (Milner, BC, Canada),

<table>
<thead>
<tr>
<th>Flooring surface</th>
<th>Sand</th>
<th>Rubber</th>
<th>Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 to 29 h before calving (n = 13)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying time (min)</td>
<td>91 (0–156)</td>
<td>0 (0–0)</td>
<td>73 (0–118)</td>
</tr>
<tr>
<td>Lying bouts (no.)</td>
<td>2 (1–3)</td>
<td>0 (0–0)</td>
<td>1 (0–2)</td>
</tr>
<tr>
<td>0 to 5 h before calving (n = 17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying time (min)</td>
<td>157 (0–243)</td>
<td>49 (0–172)</td>
<td>31 (0–73)</td>
</tr>
<tr>
<td>Lying bouts (no.)</td>
<td>4 (2–6)</td>
<td>0 (0–1)</td>
<td>1 (0–4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sand</th>
<th>Rubber</th>
<th>Concrete</th>
<th>χ²</th>
<th>df</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 to 29 h before calving (n = 13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying time (min)</td>
<td>91 (0–156)</td>
<td>0 (0–0)</td>
<td>73 (0–118)</td>
<td>8.00</td>
<td>2</td>
<td>0.05</td>
</tr>
<tr>
<td>Lying bouts (no.)</td>
<td>2 (1–3)</td>
<td>0 (0–0)</td>
<td>1 (0–2)</td>
<td>4.19</td>
<td>2</td>
<td>NS</td>
</tr>
<tr>
<td>0 to 5 h before calving (n = 17)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lying time (min)</td>
<td>157 (0–243)</td>
<td>49 (0–172)</td>
<td>31 (0–73)</td>
<td>4.80</td>
<td>2</td>
<td>0.09</td>
</tr>
<tr>
<td>Lying bouts (no.)</td>
<td>4 (2–6)</td>
<td>0 (0–1)</td>
<td>1 (0–4)</td>
<td>7.53</td>
<td>2</td>
<td><0.001</td>
</tr>
</tbody>
</table>

1Medians within a row with different superscript letters differ (P < 0.05) according to the Wilcoxon matched-
pairs rank test.
2χ², df, and P-value represent Friedman statistics.
2Lying times and lying bouts are presented as the median (25th quartile–75th quartile).
SHORT COMMUNICATION: FLOORING PREFERENCES OF DAIRY COWS AT CALVING

Zoetis (Kirkland, QC, Canada), BC Cattle Industry Development Fund (Kamloops, BC, Canada), the BC Dairy Association (Burnaby, BC, Canada), and Alberta Milk (Edmonton, AB, Canada).

REFERENCES

CCAC (Canadian Council on Animal Care). 2009. CCAC Guidelines on: The Care and Use of Farm Animals in Research, Teaching and Testing. CCAC, Ottawa, ON, Canada.

Figure 1. (A) Total lying and standing time (min/6 h) and (B) total lying time (min/6 h) on each of the 3 flooring surfaces during the calving period (0 to 5 h before calving) for cows that calved on sand (n = 10) and concrete (n = 6), respectively. Filled circles represent median (25th and 75th quartiles are indicated) and open circles represent individual cows. Medians with different letters are significantly different (P < 0.05) according to the Wilcoxon matched-pairs rank test.

