Abstract
Key words
Introduction
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
Materials and Methods
Cows, Experimental Design, and Diets
Item | Slowly fermentable | Rapidly fermentable | ||
---|---|---|---|---|
Low level | High level | Low level | High level | |
Ingredient | ||||
Native corn grain | 412.9 | 816.1 | — | — |
Gelatinized corn grain | — | — | 412.9 | 816.1 |
Palm kernel expeller | 266.8 | 119.8 | 266.8 | 119.8 |
Beet pulp (low sugar) | 282.7 | — | 282.7 | — |
Soybean meal | 18.7 | — | 18.7 | — |
Soybean meal, formaldehyde treated | — | 13.5 | — | 13.5 |
Urea | 13.5 | 23.4 | 13.5 | 23.4 |
Limestone | 0.9 | 14.0 | 0.9 | 14.0 |
Magnesium oxide | — | 5.0 | — | 5.0 |
Salt | 3.1 | 3.7 | 3.1 | 3.7 |
Sodium bicarbonate | — | 2.5 | — | 2.5 |
Vitamin-mineral premix | 1.5 | 1.5 | 1.5 | 1.5 |
Nutrient composition | ||||
DM (g/kg of product as fed) | 884 | 889 | 887 | 882 |
Ash | 54 | 50 | 47 | 48 |
CP | 169 | 170 | 167 | 186 |
NDF | 311 | 170 | 308 | 153 |
ADF | 187 | 90 | 181 | 80 |
ADL | 41 | 21 | 41 | 23 |
Crude fat | 43 | 34 | 47 | 41 |
Starch | 275 | 518 | 303 | 542 |
Sugar | 36 | 22 | 33 | 22 |
Gross energy (MJ/kg of DM) | 18.5 | 18.4 | 18.7 | 18.3 |
- Verstegen M.W.A.
- Van der Hel W.
- Brandsma H.A.
- Henken A.M.
- Bransen A.M.
Ruminal pH and Concentration of VFA
Feed Intake, Nutrients Digestibility, Nitrogen and Energy Balance
Milk Yield and Milk Composition
In Situ Rumen Degradation of Diets
Analytical Procedures
Statistical Analysis
Results
Chemical Composition of Concentrates and Diets
Item | Grass silage | Total mixed diet 1 Calculated based on analyzed chemical composition of grass silage and concentrate and mixed at a 60:40 ratio (on DM basis); SL=diet containing 270g of slowly fermentable starch per kilogram of concentrate DM; SH=diet containing 530g of slowly fermentable starch per kilogram of concentrate DM; RL=diet containing 270g of rapidly fermentable starch per kilogram of concentrate DM; RH=diet containing 530g of rapidly fermentable starch per kilogram of concentrate DM. | |||
---|---|---|---|---|---|
SL | SH | RL | RH | ||
DM (g/kg of product as fed) | 512 | 664 | 666 | 663 | 659 |
Ash | 88 | 74 | 72 | 71 | 72 |
CP | 148 | 156 | 157 | 156 | 163 |
NDF | 528 | 441 | 385 | 440 | 378 |
ADF | 296 | 252 | 214 | 250 | 210 |
ADL | 20 | 29 | 21 | 29 | 21 |
Crude fat | 38 | 40 | 36 | 42 | 39 |
Starch | NA | 110 | 207 | 121 | 217 |
Sugar | 79 | 62 | 56 | 61 | 56 |
Gross energy (MJ/kg of DM) | 19.1 | 18.8 | 18.8 | 18.9 | 18.7 |
In Situ Rumen-Degradation Characteristics
Item | Concentrate 1 SL=concentrate containing 270g of slowly fermentable starch per kilogram of concentrate DM; SH=concentrate containing 530g of slowly fermentable starch per kilogram of concentrate DM; RL=concentrate containing 270g of rapidly fermentable starch per kilogram of concentrate DM; RH=concentrate containing 530g of rapidly fermentable starch per kilogram of concentrate DM. | SED | P-value | |||||
---|---|---|---|---|---|---|---|---|
SL | SH | RL | RH | Source (S) | Level (L) | S × L | ||
Concentrate | ||||||||
Starch | ||||||||
W | 38 | 89 | 343 | 286 | 21.2 | <0.001 | 0.861 | 0.011 |
D | 963 | 911 | 657 | 714 | 21.2 | <0.001 | 0.861 | 0.011 |
kd | 0.054 | 0.054 | 0.173 | 0.137 | 0.0104 | <0.001 | 0.037 | 0.039 |
ED | 495 | 521 | 830 | 782 | 12.1 | <0.001 | 0.238 | 0.005 |
Organic matter | ||||||||
W | 116 | 167 | 187 | 224 | 8.7 | <0.001 | <0.001 | 0.280 |
D | 831 | 818 | 667 | 622 | 24.0 | <0.001 | 0.139 | 0.375 |
U | 54 | 15 | 146 | 154 | 21.7 | <0.001 | 0.351 | 0.175 |
kd | 0.043 | 0.041 | 0.078 | 0.139 | 0.0066 | <0.001 | 0.001 | 0.001 |
ED | 459 | 500 | 564 | 660 | 9.4 | <0.001 | <0.001 | 0.005 |
Nitrogen | ||||||||
W | 299 | 471 | 363 | 536 | 12.3 | 0.001 | <0.001 | 0.938 |
D | 701 | 529 | 637 | 464 | 12.3 | 0.001 | <0.001 | 0.938 |
kd | 0.025 | 0.024 | 0.025 | 0.028 | 0.0039 | 0.033 | 0.197 | 0.049 |
ED | 504 | 623 | 552 | 681 | 4.2 | <0.001 | <0.001 | 0.135 |
Total mixed diet | ||||||||
eRFOM | 494 | 510 | 536 | 575 | 3.9 | <0.001 | <0.001 | <0.001 |
Ruminal pH and Concentration of VFA
Item | Diet 1 n=4 for all diets except for RL for which n=3. SL=diet containing 270g of slowly fermentable starch per kilogram of concentrate DM; SH=diet containing 530g of slowly fermentable starch per kilogram of concentrate DM; RL=diet containing 270g of rapidly fermentable starch per kilogram of concentrate DM; RH=diet containing 530g of rapidly fermentable starch per kilogram of concentrate DM. | SED | P-value | |||||
---|---|---|---|---|---|---|---|---|
SL | SH | RL | RH | Source (S) | Level (L) | S × L | ||
Rumen pH | 6.53 | 6.49 | 6.51 | 6.53 | 0.088 | 0.872 | 0.889 | 0.650 |
Total VFA (mM) | 101.1 | 93.9 | 110.9 | 107.4 | 4.39 | 0.002 | 0.107 | 0.555 |
VFA (mol/100 mol) | ||||||||
Acetate (A) | 68.3 | 69.1 | 68.6 | 67.9 | 0.55 | 0.272 | 0.859 | 0.069 |
Propionate (P) | 15.9 | 15.6 | 16.2 | 16.8 | 0.46 | 0.046 | 0.684 | 0.172 |
Butyrate | 11.5 | 11.2 | 11.1 | 11.8 | 0.32 | 0.791 | 0.358 | 0.052 |
Isobutyrate | 1.12 | 0.88 | 0.80 | 0.66 | 0.185 | 0.051 | 0.164 | 0.691 |
Valerate | 1.54 | 1.54 | 1.54 | 1.63 | 0.106 | 0.550 | 0.580 | 0.520 |
Isovalerate | 1.69 | 1.64 | 1.82 | 1.29 | 0.311 | 0.637 | 0.215 | 0.281 |
A:P | 4.31 | 4.45 | 4.27 | 4.06 | 0.146 | 0.054 | 0.725 | 0.107 |



Feed Intake and Nutrient Digestibility
Item | Diet 1 n=10 for SL, SH, and RH, and n=8 for RL. SL=diet containing 270g of slowly fermentable starch per kilogram of concentrate DM; SH=diet containing 530g of slowly fermentable starch per kilogram of concentrate DM; RL=diet containing 270g of rapidly fermentable starch per kilogram of concentrate DM; RH=diet containing 530g of rapidly fermentable starch per kilogram of concentrate DM. | SED | P-value | |||||
---|---|---|---|---|---|---|---|---|
SL | SH | RL | RH | Source (S) | Level (L) | S × L | ||
DMI (kg/d) | 19.4 | 18.5 | 19.4 | 18.6 | 0.51 | 0.970 | 0.022 | 0.791 |
Digestibility (%) | ||||||||
DM | 72.9 | 69.7 | 67.2 | 72.7 | 1.82 | 0.302 | 0.377 | 0.002 |
OM | 74.9 | 71.1 | 68.9 | 74.4 | 1.81 | 0.299 | 0.509 | 0.001 |
CP | 63.0 | 63.0 | 59.0 | 64.3 | 2.02 | 0.348 | 0.074 | 0.074 |
NDF | 72.8 | 71.0 | 69.9 | 69.5 | 2.05 | 0.140 | 0.456 | 0.631 |
Crude fat | 63.9 | 56.4 | 61.3 | 64.7 | 2.21 | 0.081 | 0.203 | 0.002 |
Starch | 95.6 | 95.4 | 96.7 | 97.6 | 0.01 | 0.006 | 0.491 | 0.237 |
Gross energy | 69.5 | 67.5 | 65.6 | 69.8 | 1.75 | 0.523 | 0.381 | 0.019 |
Milk Yield and Milk Composition
Item | Diet 1 n=10 for SL, SH, and RH, and n=8 for RL. SL=diet containing 270g of slowly fermentable starch per kilogram of concentrate DM; SH=diet containing 530g of slowly fermentable starch per kilogram of concentrate DM; RL=diet containing 270g of rapidly fermentable starch per kilogram of concentrate DM; RH=diet containing 530g of rapidly fermentable starch per kilogram of concentrate DM. | SED | P-value | |||||
---|---|---|---|---|---|---|---|---|
SL | SH | RL | RH | Source (S) | Level (L) | S × L | ||
Milk yield (kg/d) | 24.5 | 22.5 | 24.4 | 24.7 | 1.34 | 0.276 | 0.390 | 0.238 |
FPCM (kg/d) | 27.9 | 25.2 | 27.1 | 26.9 | 1.17 | 0.614 | 0.092 | 0.146 |
Milk composition | ||||||||
Fat (%) | 5.24 | 5.11 | 4.97 | 4.88 | 0.313 | 0.271 | 0.602 | 0.930 |
Protein (%) | 3.61 | 3.58 | 3.68 | 3.68 | 0.154 | 0.428 | 0.870 | 0.866 |
Lactose (%) | 4.53 | 4.55 | 4.47 | 4.55 | 0.065 | 0.486 | 0.236 | 0.486 |
Milk urea (mmol/L) | 3.60 | 3.49 | 3.46 | 3.50 | 0.185 | 0.619 | 0.809 | 0.587 |
SCC × 1,000 (cells/mL) | 203 | 165 | 237 | 195 | 84.7 | 0.597 | 0.519 | 0.975 |
Milk solids yield (kg/d) | ||||||||
Fat | 1.25 | 1.11 | 1.17 | 1.15 | 0.061 | 0.643 | 0.077 | 0.223 |
Protein | 0.87 | 0.79 | 0.88 | 0.88 | 0.039 | 0.088 | 0.155 | 0.202 |
Lactose | 1.11 | 1.03 | 1.09 | 1.13 | 0.063 | 0.393 | 0.710 | 0.203 |
Dietary Treatments and Methane Production
Item | Diet 1 n=5 for SL, SH, and RH, and n=4 for RL. SL=diet containing 270g of slowly fermentable starch per kilogram of concentrate DM; SH=diet containing 530g of slowly fermentable starch per kilogram of concentrate DM; RL=diet containing 270g of rapidly fermentable starch per kilogram of concentrate DM; RH=diet containing 530g of rapidly fermentable starch per kilogram of concentrate DM. | SED | P-value | |||||
---|---|---|---|---|---|---|---|---|
SL | SH | RL | RH | Source (S) | Level (L) | S × L | ||
CH4 (g/d) | 436 | 397 | 427 | 401 | 16.3 | 0.862 | 0.017 | 0.606 |
CH4 (g/kg of DMI) | 22.4 | 21.5 | 22.2 | 21.6 | 0.65 | 0.852 | 0.131 | 0.732 |
CH4 (g/kg of milk) | 17.8 | 17.9 | 17.8 | 16.6 | 0.95 | 0.346 | 0.389 | 0.345 |
CH4 (g/kg of FPCM) | 15.7 | 15.9 | 15.9 | 15.0 | 0.59 | 0.450 | 0.476 | 0.196 |
CH4 (g/kg of digested DM) | 30.5 | 30.7 | 33.0 | 29.9 | 1.24 | 0.339 | 0.119 | 0.090 |
CH4 (g/kg of eRFOM) | 49.1 | 45.6 | 44.6 | 40.5 | 1.31 | <0.001 | 0.002 | 0.770 |
CH4 (% of gross energy intake) | 6.6 | 6.3 | 6.5 | 6.4 | 0.20 | 0.898 | 0.112 | 0.587 |
Nitrogen and Energy Balance
Item | Diet 1 n=5 for SL, SH, and RH, and n=4 for RL. SL=diet containing 270g of slowly fermentable starch per kilogram of concentrate DM; SH=diet containing 530g of slowly fermentable starch per kilogram of concentrate DM; RL=diet containing 270g of rapidly fermentable starch per kilogram of concentrate DM; RH=diet containing 530g of rapidly fermentable starch per kilogram of concentrate DM. | SED | P-value | |||||
---|---|---|---|---|---|---|---|---|
SL | SH | RL | RH | Source (S) | Level (L) | S × L | ||
Metabolic BW (kg of BW0.75) | 126.4 | 124.6 | 129.2 | 123.9 | 4.15 | 0.739 | 0.247 | 0.554 |
Gross energy intake (kJ/kg of BW0.75 per day) | 2,908 | 2,824 | 2,817 | 2,841 | 126.3 | 0.687 | 0.739 | 0.559 |
ME intake (kJ/kg of BW0.75 per day) | 1,740 | 1,656 | 1,630 | 1,653 | 79.7 | 0.333 | 0.596 | 0.360 |
Methane production (kJ/kg of BW0.75 per day) | 192 | 178 | 184 | 181 | 7.9 | 0.670 | 0.140 | 0.360 |
Heat production (kJ/kg of BW0.75 per day) | 969 | 927 | 961 | 950 | 23.1 | 0.645 | 0.133 | 0.366 |
N intake (g/d) | 489.1 | 474.6 | 479.6 | 484.0 | 14.93 | 0.993 | 0.643 | 0.389 |
N in manure (g/d) | 322.7 | 325.2 | 341.7 | 352.3 | 14.39 | 0.064 | 0.411 | 0.556 |
N in milk (g/d) | 136.3 | 123.8 | 138.4 | 137.1 | 5.23 | 0.060 | 0.088 | 0.159 |
N retained (g/d) | 25.5 | 21.0 | −6.4 | −10.9 | 26.75 | 0.112 | 0.815 | 1.000 |
Energy in milk (kJ/kg of BW0.75 per day) | 692 | 625 | 657 | 678 | 32.7 | 0.776 | 0.390 | 0.072 |
Energy retention total (kJ/kg of BW0.75 per day) | 80 | 104 | 12 | 25 | 85.7 | 0.243 | 0.763 | 0.932 |
Energy retention protein (kJ/kg of BW0.75 per day) | 29 | 25 | −9 | −14 | 31.8 | 0.110 | 0.838 | 0.990 |
Discussion
Effects on Ruminal pH and Concentration of VFA
Effects on DMI, Nutrient Digestibility, and Milk Production
Effects on Methane Production
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
- Hristov A.N.
- Oh J.
- Firkins J.L.
- Dijkstra J.
- Kebreab E.
- Waghorn G.
- Makkar H.P.S.
- Adesogan A.T.
- Yang W.
- Lee C.
- Gerber P.J.
- Henderson B.
- Tricarico J.M.
Effects on Nitrogen Balance
Conclusions
Acknowledgments
References
- The effect of silage and concentrate type on intake behavior, rumen function, and milk production in dairy cows in early and late lactation.J. Dairy Sci. 2008; 91: 4778-4792
- Effects of diet on short-term regulation of feed intake by lactating dairy cattle.J. Dairy Sci. 2000; 83: 1598-1624
- The hepatic oxidation theory of the control of feed intake and its application to ruminants.J. Anim. Sci. 2009; 87: 3317-3334
- Modeling the implications of feeding strategy on rumen fermentation and functioning of the rumen wall.Anim. Feed Sci. Technol. 2008; 143: 3-26
- Estimation of the stoichiometry of volatile fatty acid production in the rumen of lactating cows.J. Theor. Biol. 2006; 238: 36-51
- Methane emissions from feedlot cattle fed barley or corn diets.J. Anim. Sci. 2005; 83: 653-661
- Nutrient digestibility of diets with different fiber to starch ratios when fed to lactating dairy cows.J. Dairy Sci. 2005; 88: 1015-1023
- Effects of increasing amounts of corn dried distillers grains with solubles in dairy cow diets on methane production, ruminal fermentation, digestion, N balance, and milk production.J. Dairy Sci. 2013; 96: 2413-2427
- Evaluation of dietary strategies to reduce methane production in ruminants: A modelling approach.Can. J. Anim. Sci. 2001; 81: 563-574
- Inclusion of sugar beet pulp in cereal-based diets for fattening lambs.Small Rumin. Res. 2007; 71: 250-254
- Lactational response of dairy-cows to diets varying in ruminal solubilities of carbohydrate and crude protein.J. Dairy Sci. 1989; 72: 928-941
- Structural and non-structural carbohydrates in concentrate supplements of silage-based dairy-cow rations. 1. Feed-intake and milk-production.Neth. J. Agric. Sci. 1990; 38: 487-498
- Absorption of volatile fatty-acids from the rumen of lactating dairy cows as influenced by volatile fatty-acid concentration, pH and rumen liquid volume.Br. J. Nutr. 1993; 69: 385-396
- Ruminal pH regulation and nutritional consequences of low pH.Anim. Feed Sci. Technol. 2012; 172: 22-23
- Dietary strategies to reducing N excretion from cattle: Implications for methane emissions.Curr. Opin. Environ. Sustain. 2011; 3: 414-422
- Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis.J. Dairy Sci. 2013; 96: 533-550
- Effects of grain variability and processing on starch utilization by lactating dairy cattle.J. Anim. Sci. 2001; 79: E218-E238
- Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows.J. Dairy Sci. 2008; 91: 2726-2735
- Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production.J. Dairy Sci. 2013; 96: 4553-4567
- Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options.J. Anim. Sci. 2013; 91: 5045-5069
- Solomon S. Qin D. Manning M. Chen Z. Marquis M. Averyt K.B. Tignor M. Miller H.L. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK2007
ISO 5983. 2005. Animal Feeding Stuffs. Determination of Nitrogen Content and Calculation of Crude Protein Content—Kjeldahl Method. Int. Org. Stand., Geneva, Switzerland.
ISO 5984. 2002. Animal Feeding Stuffs. Determination of Crude Ash. Int. Org. Stand., Geneva, Switzerland.
ISO 6492. 1999. Animal Feeding Stuffs. Determination of Fat Content. Int. Org. Stand., Geneva, Switzerland.
ISO 6496. 1999. Animal Feeding Stuffs. Determination of Moisture and Other Volatile Matter Content. Int. Org. Stand., Geneva, Switzerland.
ISO 9622. 1999. Whole Milk—Determination of Milk Fat, Protein and Lactose Content—Guidance on the Operation of Mid-infrared Instruments. Int. Org. Stand., Geneva, Switzerland.
ISO 9831. 1998. Animal Feeding Stuffs, Animal Products, and Feces or Urine. Determination of Gross Caloric Value—Bomb Calorimetric Method. Int. Org. Stand., Geneva, Switzerland.
ISO 14637. 2004. Milk—Determination of Urea Content—Enzymatic Method Using Difference in pH. Int. Org. Stand., Geneva, Switzerland.
ISO 15914. 2004. Animal Feeding Stuffs. Enzymatic Determination of Total Starch Content. Int. Org. Stand., Geneva, Switzerland.
- Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions.J. Dairy Sci. 2014; 97: 3231-3261
- Effect of grain processing and silage on microbial protein synthesis and nutrient digestibility in beef cattle fed barley-based diets.J. Anim. Sci. 2003; 81: 1057-1067
- Statistical analysis of repeated measures data using SAS procedures.J. Anim. Sci. 1998; 76: 1216-1231
- Methane mitigation in ruminants: From microbe to the farm scale.Animal. 2010; 4: 351-365
- Methane emissions, feed intake, performance, digestibility, and rumen fermentation of finishing beef cattle offered whole-crop wheat silages differing in grain content.J. Anim. Sci. 2010; 88 (): 2703-2716
- Effects of source of protein and carbohydrate on ruminal fermentation and passage of nutrients to the small intestine of lactating cows.J. Dairy Sci. 1989; 72: 2002-2016
- A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: Model development, evaluation, and application.J. Anim. Sci. 2001; 79: 1584-1597
- A review of starch digestion in the lactating dairy cow and proposals for a mechanistic model: 2. Postruminal starch digestion and small intestinal glucose absorption.J. Anim. Feed Sci. 1999; 8: 451-481
- Feeding behavior and performance of dairy cows fed pelleted non-roughage fiber byproducts.J. Dairy Sci. 2004; 87: 1372-1379
- Estimation of protein degradation in the rumen from incubation measurements weighted according to rate of passage.J. Agric. Sci. 1979; 92: 499-503
- Production and metabolic effects of site of starch digestion in dairy cattle.Anim. Feed Sci. Technol. 2006; 130: 78-94
SAS Institute Inc. 2010. Statistical Analysis Software. SAS/STAT 9.3 User’s Guide. SAS Inst. Inc., Cary, NC.
- Effect of grains differing in expected ruminal fermentability on the productivity of lactating dairy cows.J. Dairy Sci. 2007; 90: 2852-2859
- Critical analysis of N balance experiments with lactating cows.Livest. Prod. Sci. 1997; 52: 113-122
- Interaction between dietary content of protein and sodium chloride on milk urea concentration, urinary urea excretion, renal recycling of urea, and urea transfer to the gastrointestinal tract in dairy cows.J. Dairy Sci. 2013; 96: 5734-5745
- Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets.J. Dairy Sci. 2003; 86: 3620-3633
- The Dutch protein evaluation system—The DVE/OEB-system.Livest. Prod. Sci. 1994; 40: 139-155
- Rumen degradation characteristics of perennial ryegrass cultivars during the growing season.Anim. Feed Sci. Technol. 2006; 131: 102-119
- Effects of feeding perennial ryegrass with an elevated concentration of water soluble carbohydrates on intake, rumen function and performance of dairy cows.Anim. Feed Sci. Technol. 2005; 121: 243-256
- Collaborative study of acid-detergent fiber and lignin.J. Assoc. Off. Anal. Chem. 1973; 56: 781-784
- Methods for dietary fiber, neutral detergent fiber, and nonstructural polysaccharides in relation to animal nutrition.J. Dairy Sci. 1991; 74: 3583-3597
- Effects of partial replacement of ryegrass by low-protein feeds on rumen fermentation and nitrogen loss by dairy cows.J. Dairy Sci. 1993; 76: 2982-2993
- Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows.J. Dairy Sci. 2011; 94: 3094-3104
- Effects of a combination of feed additives on methane production, diet digestibility, and animal performance in lactating dairy cows.J. Dairy Sci. 2011; 94: 1445-1454
- The Wageningen respiration unit for animal production research: A description of the equipment and its possibilities.in: Verstegen M.W.A. Henken A.M. Energy Metabolism in Farm Animals: Effects of Housing, Stress and Disease. Martinus Nijhoff Publ., Dordrecht, the Netherlands1987: 21-48
- Pelleted beet pulp substituted for high-moisture corn: 3. Effects on ruminal fermentation, pH, and microbial protein efficiency in lactating dairy cows.J. Dairy Sci. 2003; 86: 3562-3570
- Pelleted beet pulp substituted for high-moisture corn: 1. Effects on feed intake, chewing behavior, and milk production of lactating dairy cows.J. Dairy Sci. 2003; 86: 3542-3552
- Determination of chromic oxide in feces samples by atomic absorption spectrophotometry.J. Agric. Sci. 1962; 59: 381-385
Article info
Publication history
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy