Adaptations of hepatic lipid metabolism and mitochondria in dairy cows with mild fatty liver

Xiliang Du,* Taiyu Shen,* Heyuan Wang,† Xia Qin,‡ Dongmei Xing,§ Qianqian Ye,* Zhen Shi,* Zhiyuan Fang,* Yiwei Zhu,* Yuchen Yang,* Zhicheng Peng,* Chenxu Zhao,* Bin Lv,* Xiaobing Li,* Guowen Liu,† and Xinwei Li*†

*Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
†Department of Endocrinology and Metabolism, The First Hospital, Jilin University, 71 Xinmin Road, Changchun, Jilin Province, 130021, China
‡College of Veterinary Medicine, Shenyang Agriculture University, No. 120 Dongling Road, Shenhe District, Shenyang, Liaoning Province 110866, China
§Animal Medicine College, Hunan Agriculture University, Changsha, Hunan 410128, China

ABSTRACT

The inevitable deficiency in nutrients and energy at the onset of lactation requires an optimal adaptation of the hepatic metabolism to overcome metabolic stress. Fatty liver is one of the main health disorders after parturition. Therefore, to investigate changes in hepatic lipid metabolic status and mitochondria in dairy cows with mild fatty liver, liver and blood samples were collected from healthy cows (n = 15) and cows with mild fatty liver (n = 15). To determine the effects of palmitic acids (PA), one of the major component of fatty acids, on lipid metabolism and mitochondria in vitro, calf hepatocytes were isolated from healthy calves and treated with various concentrations of PA (0, 50, 100, and 200 μM). Dairy cows with mild fatty liver displayed hepatic lipid accumulation. The protein levels of sterol regulatory element-binding protein 1c (SREBP-1c) and peroxisome proliferator-activated receptor-α (PPARα) and mRNA levels of acetyl CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), acyl-CoA oxidase (ACO), and carnitine palmitoyltransferase 1A (CPT1A) were significantly higher in dairy cows with mild fatty liver than in control cows. The hepatic mitochondrial DNA content, mRNA levels of oxidative phosphorylation complexes I to V (CO 1-V), protein levels of cytochrome c oxidase subunit IV (COX IV), voltage dependent anion channel 1 (VDAC1), peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α), NRF1, mitochondrial transcription factor A, and ATP content were all markedly increased in the liver of dairy cows with mild fatty liver compared with healthy cows. The PA treatment significantly increased lipid accumulation; protein levels of SREBP-1c and PPARα; and mRNA levels of ACC1, FAS, ACO, and CPT1A in calf hepatocytes. Moreover, the mitochondrial DNA content, mRNA levels of CO 1-V, protein levels of COX IV, VDAC1, PGC-1α, NRF1, mitochondrial transcription factor A, and ATP content were significantly increased in PA-treated hepatocytes compared with control hepatocytes. The protein level of mitofusin-2 was significantly decreased in PA-treated groups. In conclusion, lipid synthesis and oxidation, number of mitochondria, and ATP production were increased in the liver of dairy cows with mild fatty liver and PA-treated calf hepatocytes. These changes in hepatic mitochondria and lipid metabolism may be the adaptive mechanism of dairy cows with mild fatty liver.

Key words: mild fatty liver, lipid metabolism, mitochondria, adaptation, dairy cow

INTRODUCTION

The transition period in dairy cows, which spans from 3 wk before to 3 wk after calving, is defined as the changes from late pregnancy to the adaptation phase of early lactation. Voluntary DMI reduction around the time of parturition along with increases in energy requirements to meet the needs of gravidity and lactogenesis lead to cows entering a state of negative energy balance (Weber et al., 2013; Song et al., 2016). Drackley et al. (2001) reported that energy demands increased approximately 3-fold in early-lactating cows compared with pregnant and nonlactating cows. Therefore, cows mobilize fat depots to provide fatty acids as an energy fuel to meet energy requirements. During the transition period, circulating fatty acid concentration and blood flow to the liver are both increased, and excessive amounts of fatty acids are trans-
ported to the liver (Reynolds et al., 2003). Palmitic acid (PA) is an important representative of fatty acids released during lipolysis (Rukkwamsuk et al., 2000). Although many peripheral tissues remove fatty acids from the blood, up to 25% of fatty acids are removed by the liver and subsequently oxidized or re-esterified and stored as triglycerides (TG; Sejersen et al., 2012). High liver fat content can result in metabolic imbalances that are related to clinical diseases such as ketosis and fatty liver syndrome (Bobe et al., 2004). In the first month after calving, 5 to 10% of dairy cows have severe fatty liver, and 30 to 40% have mild and moderate fatty liver (Bobe et al., 2004). More important, fatty liver is associated with increased veterinary costs, decreased milk production, and longer calving intervals (Grummer, 2008). Therefore, the rapid adaptation of key metabolic pathways in the liver to support lactation is central to the ability of cows to make an uneventful transition.

The regulation of hepatic lipid metabolism is largely dependent on mitochondria, the primary organelle of cellular adenosine triphosphate (ATP) production, using the energy released from the respiratory chain mediated by oxidative phosphorylation complexes (CO I, CO II, CO III, CO IV, and CO V; CO I-V; Begriche et al., 2013; Yamaguchi et al., 2016). Mitochondrial impairment can contribute to the development of fatty liver or insulin resistance in mice (Rovira-Llopis et al., 2017). More important, amelioration of mitochondrial function prevents hepatic steatosis in obese mice (Lin et al., 2014). Interestingly, Koliaki and Roden (2013) showed that obese individuals with fatty liver had increased mitochondrial respiratory rates compared with lean ones, suggesting hepatic mitochondrial flexibility at the early stages of fatty liver. Moreover, several studies reported that adaptations of mitochondrial function and lipid metabolism were observed in mice or patients with nonalcoholic fatty liver (Begriche et al., 2013; Franko et al., 2014; Sunny et al., 2017). Dairy cows during the periparturient period also displayed hepatic metabolic adaptations (Drackley et al., 2001; Ha et al., 2017), even though the cellular and molecular mechanisms have not yet been elucidated. We investigated the changes in hepatic lipid metabolism and mitochondria in cows with moderate and severe fatty liver in our previous studies (Li et al., 2015; Du et al., 2017a; Gao et al., 2018). Nevertheless, to our knowledge, few studies have evaluated the status of mitochondria in dairy cows with mild fatty liver and the adaptive mechanism of calf hepatocytes in vitro (Wathes, 2012; Laubenthal et al., 2016). In addition, the effects of PA on lipid metabolism and mitochondria of calf hepatocytes are unclear. Therefore, the aim of this study was to investigate (1) the hepatic lipid metabolic status in dairy cows with mild fatty liver, (2) the hepatic mitochondria status in dairy cows with fatty liver, and (3) the effects of PA on lipid metabolism and mitochondria in calf hepatocytes.

MATERIALS AND METHODS

Animals

The Ethics Committee on the Use and Care of Animals at Jilin University (Changchun, China) approved the study protocol [2015 clinical trial (2015-121)]. To guarantee that the cows did not have any other comorbidities, all cows received a routine physical examination. Cows were fed ad libitum, and all cows received the same diet. The basal diet formulation is shown in Table 1. We chose lactating Holstein cows with similar numbers of lactations (median = 3, range = 2-4) and DIM (median = 6 d, range = 3-9 d) from a 1,000-cow dairy farm located in Changchun, Jilin Province, China. Measurement of liver TG is the gold standard for diagnosing and staging fatty liver in dairy cows (Bobe et al., 2004). According to a review by Bobe et al. (2004), fatty liver can be categorized into normal liver and mild, moderate, and severe fatty liver. In healthy cows, hepatic TG content is less than 1% (% g/g of wet weight). In cows with mild fatty liver, hepatic TG content is higher than 1% but less than 5%. Fifteen healthy Holstein cows and 15 cows with mild fatty liver were selected for the experiments. Table 2 provides a basic description of the cows with mild fatty liver and the healthy cows.

Table 1. Nutrient composition of the diets

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredient (%)</td>
<td></td>
</tr>
<tr>
<td>Corn silage</td>
<td>40.00</td>
</tr>
<tr>
<td>Corn</td>
<td>35.00</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>8.00</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>5.00</td>
</tr>
<tr>
<td>Sunflower</td>
<td>8.00</td>
</tr>
<tr>
<td>NaCl</td>
<td>1.00</td>
</tr>
<tr>
<td>Premix¹</td>
<td>1.80</td>
</tr>
<tr>
<td>NaHCO3</td>
<td>1.20</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
<tr>
<td>Nutrient comp</td>
<td></td>
</tr>
<tr>
<td>NEL (MJ/kg)</td>
<td>6.70</td>
</tr>
<tr>
<td>CP</td>
<td>15.20</td>
</tr>
<tr>
<td>NDF</td>
<td>33.45</td>
</tr>
<tr>
<td>ADK</td>
<td>17.20</td>
</tr>
<tr>
<td>NFC</td>
<td>40.40</td>
</tr>
<tr>
<td>Ca</td>
<td>0.70</td>
</tr>
<tr>
<td>P</td>
<td>0.50</td>
</tr>
</tbody>
</table>

¹Provided the following per kilogram of diet: vitamin A 200,000 IU, vitamin D 70,000 IU, vitamin E 1,000 IU, Fe 2,000 mg, Cu 600 mg, Zn 2,400 mg, Mn 1,300 mg, I 6 mg, Co 7 mg.
The milk yield was recorded on 3 consecutive days at 0530 and 1500 h. Blood samples were collected on 3 consecutive days via jugular venipuncture between 0700 and 0800 h before feeding and immediately centrifuged at 3,500 × g for 15 min at 4°C. The serum was obtained and stored at −80°C until analysis. The liver samples were collected within 3 to 9 d after calving. After blood collection, liver tissue samples were taken from the 11th or 12th right intercostal space twice from each cow by liver puncture needle (Shanghai Surgical Equipment Factory, Shanghai, China; Du et al., 2017a). Before liver biopsy, the intercostal space was shaved, sanitized with iodine scrub and 75% alcohol, and anesthetized with a subcutaneous injection of 2% lidocaine HCl (Sigma-Aldrich Co., St. Louis, MO). A scalpel blade was used to make a 3-mm stab incision in the skin. The puncture needle was then inserted through the intercostal muscle and into the liver. The liver tissues (approximately 150 mg from each collection) were immediately frozen in liquid nitrogen or fixed with 10% formaldehyde neutral buffer solution, optimal cutting temperature compound (Sakura Finetek Co., Torrance, CA), or 2.5% glutaraldehyde and 2% paraformaldehyde.

during the experimental work, the cows were housed in tiestalls barn.

Determination of Blood Parameters

The glucose, BHB, and fatty acids concentrations in serum were determined using a Hitachi 7170 autoanalyzer (Hitachi, Tokyo, Japan) with commercially available kits (BHB: cat. no. RB1008; fatty acids: cat. no. FA115; glucose: cat. no. GL3815; Randox Laboratories, Crumlin, UK). The activities of aspartate aminotransferase and alanine aminotransferase were determined using an automatic biochemistry analyzer (Sekisui Medical Co. Ltd., Tokyo, Japan) with commercially available kits (aspartate aminotransferase: cat. no. AS3804; alanine aminotransferase: cat. no. AL3801; Randox Laboratories).

Hepatocyte Isolation and Culture

Calf hepatocytes were isolated using a modified 2-step collagenase perfusion method as previously described (Du et al., 2017b,c). Five calves (1 d old, female, 30–40 kg, healthy, fasting) were used for hepatocyte isolation in this experiment. Hepatocytes were isolated from each calf separately, and all assays were done with calf considered as random. The caudate liver lobe of Holstein calves was obtained through surgical liver excision according to the methods of a previous study (Parker and Gaughan, 1988). Subsequently, the liver was perfused with perfusion solution A (140 mM NaCl, 10 mM HEPES, 6.7 mM KCl, 0.5 mM EDTA, and 2.5 mM glucose; pH 7.2–7.4, 37°C) at a flow rate of 50 mL/min for 12 min. Then, the liver was perfused with solution B (140 mM NaCl, 30 mM HEPES, 6.7 mM KCl, 5 mM CaCl₂, and 2.5 mM glucose; pH 7.2–7.4, 37°C) at a flow rate of 50 mL/min for 3 min until the liquid became clear. Subsequently, the liver was digested with a collagenase IV solution (0.1 g of collagenase IV dissolved in 0.5 L of perfusion solution B, pH 7.2–7.4, 37°C) at a flow rate of 20 mL/min for 15 to 20 min. During the digestion step, most of the liver tissue was dissociated with a collagenase IV solution. Then, the liver was moved to a sterile flat plate after digestion, and 100 mL of fetal bovine serum (Hyclone Laboratories, Logan, UT) was added to terminate the collagenase digestion. The liver was cut open to release the hepatocytes and the liver capsule, and blood vessels and connective tissue were removed using forceps and scissors. The tissue suspension was filtered sequentially with 100-mesh (150 μm) and 200-mesh (75 μm) cell sieves. The hepatocyte suspension was washed twice in RPMI-1640 basic medium (Hyclone Laboratories) and centrifuged for 5 min at 500 × g at 4°C. Cell viability was assessed with the Trypan blue dye exclusion method (Sigma-Aldrich Co.). Only when the percentage of viable hepatocytes was higher than 95% were hepatocytes used to perform further experiment. The hepatocyte suspension was

Table 2. Description of cows classified as having mild fatty liver (n = 15) or as healthy (control; n = 15)

<table>
<thead>
<tr>
<th>Item</th>
<th>Mild fatty liver</th>
<th>Control</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW (kg)</td>
<td>672</td>
<td>623-702</td>
<td>643</td>
</tr>
<tr>
<td>Milk production (kg of milk/cow per day)</td>
<td>29</td>
<td>27.8-30.5</td>
<td>30.6</td>
</tr>
<tr>
<td>DMI (kg/d)</td>
<td>19.4</td>
<td>18.7-20.2</td>
<td>20.6</td>
</tr>
<tr>
<td>BCS</td>
<td>2.8</td>
<td>2.65-2.93</td>
<td>2.67</td>
</tr>
<tr>
<td>Glucose (mM)</td>
<td>3.07</td>
<td>2.78-3.47</td>
<td>3.75</td>
</tr>
<tr>
<td>Fatty acids (mM)</td>
<td>0.6</td>
<td>0.49-0.81</td>
<td>0.44</td>
</tr>
<tr>
<td>BHB (mM)</td>
<td>1.1</td>
<td>0.8-1.4</td>
<td>0.53</td>
</tr>
<tr>
<td>Aspartate aminotransferase (U/L)</td>
<td>80</td>
<td>74-96</td>
<td>73</td>
</tr>
<tr>
<td>Alanine aminotransferase (U/L)</td>
<td>26</td>
<td>22-31</td>
<td>18</td>
</tr>
</tbody>
</table>

Journal of Dairy Science Vol. 101 No. 10, 2018
Transmission Electron Microscopy
Liver Histology
Hepatocyte Treatments
Liver Histology
Hepatocyte Treatments
Liver Histology
Transmission Electron Microscopy

The ultrastructural characteristics of mitochondria were visualized by transmission electron microscopy (Lei et al., 2016). Liver biopsies were fixed with 2.5% glutaraldehyde and 2% paraformaldehyde at 4°C for 12 h and then postfixed in 1% osmium tetroxide for 1 h. Subsequently, liver biopsies were dehydrated in an ethanol series and infiltrated with Spurr’s resin. Ultrathin sections (50 nm) were cut and stained with 4% uranyl acetate and 0.2% lead citrate. Observations were performed on an H-7650 electron microscope (Hitachi, Ibaraki Prefecture, Japan). To guarantee that the results of ultrastructural analysis were representative, each liver sample was used to perform ultrastructural analysis, and at least 5 random views in each sample were obtained.

ATP Content Determination

The ATP content was determined using an ATP analysis kit (A095; Nanjing Jiancheng Bioengineering Institute, Nanjing, China). Briefly, liver tissues (~20 mg) or hepatocytes were homogenized in cold PBS followed by 3 freeze–thaw cycles. The homogenate was incubated in boiling water for 10 min, vortexed for 1 min, and centrifuged for 5 min at 13,000 × g at room temperature, and the supernatant was collected. The supernatant was mixed with substrate solutions and accelerator and incubated at 37°C for 30 min. Then, the mixtures were mixed with precipitant and centrifuged for 5 min at 1,500 × g at room temperature before being read at 636 nm. The ATP values were corrected by protein content. Total protein concentration was estimated by the bicinchoninic acid (BCA) method (P1511; Applygen Technologies Inc., Beijing, China) and performed according to the manufacturer’s instructions (http://www.applygen.com/a/danbaidingliang/94.html). Hepatic ATP content of dairy cows with mild fatty liver was normalized to that in the control group.

MitoTracker Staining

Mitochondria were detected using MitoTracker Red CMXRox (M7512; Life Technologies, Carlsbad, CA). The cell-permeant MitoTracker Red CMXRox probes contain a mildly thiol-reactive chloromethyl moiety for labeling mitochondria. Treated calf hepatocytes were incubated with 200 nM MitoTracker Red CMXRox diluted in warmed serum free culture medium at 37°C for 30 min. The hepatocytes were washed twice with PBS and fixed with warmed 4% paraformaldehyde for 15 min at 37°C. Then, nuclei were stained with 10 μg/mL of 4’,6-diamidino-2-phenylindole (D9542; Sigma-Aldrich Co.) for 10 min at room temperature. The coverslips were then sealed with glycerol, and the samples were imaged using laser confocal microscopy (Fluoview FV1200, Olympus, Tokyo, Japan). The experiments were repeated 5 times; each time, at least 3 zones were selected for measurement. Image-Pro Plus software (Media Cybernetics) was used to quantify the signals.
Oil-Red O Staining of Hepatocytes

Oil-red O (Sigma-Aldrich Co.) working solution was prepared by diluting oil-red O stock solution (5 μg of oil-red O in 100 mL of isopropanol at 65°C for 48 h) 3:2 with double-distilled H2O. All assay steps were performed at room temperature. Treated cells were washed once in PBS, fixed in 4% paraformaldehyde for 15 min, and then incubated for 5 min in 60% isopropanol. Subsequently, cells were incubated for 30 min with oil-red O working solution and washed for 30 s in 60% isopropanol. Cells were washed 4 times with double-distilled H2O and counterstained with hematoxylin, and images were acquired (Olympus). Quantification of lipid droplets was performed using Image-Pro Plus software (Media Cybernetics).

Total DNA Extraction

Total DNA was extracted by Total DNA Preparation Kit (D0063; Beyotime Biotechnology, Hangzhou, China). Briefly, the homogenate of liver tissues or hepatocytes was suspended in PBS supplemented with RNase A and protease K and incubated for 2 min at room temperature. Then, lysis buffer B was added and incubated for 10 min at 70°C. The samples were mixed with dehydrated alcohol and pipetted into a filter tube and centrifuged at 6,000 × g for 1 min, and the flow-through was discarded. The samples were washed with washing buffer. Subsequently, elution buffer was added to the filter tube and the eluted DNA was collected by centrifugation at 18,000 × g for 1 min. The DNA concentration and quality (1.7 < optical density 260/280 < 1.9) were measured using a K5500 microspectrophotometer (Beijing Kaiao Technology Development Ltd.). Using the average molecular weight of the template DNA and Avogadro's constant, the number of copies of mtDNA or nDNA per microliter was calculated as

\[
\text{copies/μL} = \frac{6.02 \times 10^{23} \times C \times 10^{-9}}{M_{\text{wt}}},
\]

where Avogadro's constant is 6.02 × 10²³, C = concentrations (ng/μL), and Mwt = base pairs × 660 (Amaral et al., 2007; Sood et al., 2015).

The purified PCR production was serially diluted to obtain a standard series from 10⁸ to 10³ copies/μL with each dilution differing by 10-fold. Quantitative reverse-transcription (qRT)-PCR was performed using a 7500 Real-Time PCR System (Applied Biosystems Inc., Foster City, CA) with the SYBR Green QuantiTect RT-PCR Kit (TaKRa Biotechnology Co. Ltd.). The qPCR-RT was conducted under the following conditions: initial denaturation at 94°C for 2 min, 35 cycles of amplification (denaturation at 94°C for 10 s, annealing at 60°C for 15 s, and extension at 72°C for 30 s), and extension at 72°C for 5 min. Each reaction was run in triplicate for both standards and samples as well as for negative controls.

The standard curve was established by plotting the cycle threshold (Ct) on the y-axis and the natural log of concentration (copies/μL) on the x-axis. Only reactions with high efficiencies (95% < efficiency <105%) were considered, and only standard curves with a Pearson correlation coefficient of at least 0.99 were taken into account. The total copy number of mtDNA or nDNA was calculated by relating the Ct value to the standard curve. The relative copy number of mtDNA was normalized to that of nDNA. Then, the mtDNA/nDNA of the mild fatty liver group was normalized to that of the control group.

Mitochondrial DNA Quantification

We quantified mitochondrial DNA (mtDNA) in the total DNA extracted from liver tissues (~15 mg) or hepatocytes as described before (Amaral et al., 2007; Mei et al., 2015). We used 12S rRNA and cyclophilin A to amplify mtDNA and nuclear DNA (nDNA; Bonnard et al., 2008; Laubenthal et al., 2016). The specific primers are shown in Table 3. The PCR reaction was conducted under the following conditions: initial denaturation at 95°C for 5 min, 30 cycles of amplification (denaturation at 95°C for 45 s, annealing at 60°C for 30 s, and extension at 72°C for 45 s), and extension at 72°C for 10 min with PrimeStar Max DNA Polymerase (R045A; TaKaRa Biotechnology Co. Ltd., Dalian, China). The PCR production was purified using the DNA Gel Extraction Kit (D0056; Beyotime Biotechnology). The DNA concentration and quality (1.7 < optical density 260/280 < 1.9) were measured using a K5500 microspectrophotometer (Beijing Kaiao Technology Development Ltd.). Using the average molecular weight of the template DNA and Avogadro's constant, the number of copies of mtDNA or nDNA per microliter was calculated as
meixueyushenghuaceding/ganyousanzhic/2012/0905/276.html). Total protein concentration was estimated by the BCA method (P1511; Applygen Technologies Inc.).

qRT PCR Assay

The total RNA of hepatocytes and liver tissues (~15 mg) was extracted using RNAiso Plus (TaKaRa Biotechnology Co. Ltd.) according to the manufacturer’s instructions (http://www.takarabiomed.com.cn/DownLoad/9108-9109.pdf). The RNA concentration and quality were measured using a K5000 microspectrophotometer (Beijing Kaiao Technology Development Ltd.) and electrophoresis (1% agarose gels). Then, 1 μg of total RNA in each sample was reverse-transcribed to cDNA in 20-μL reactions using a reverse transcription kit (TaKaRa Biotechnology Co. Ltd.) according to the supplier’s protocol (http://www.takarabiomed.com.cn/DownLoad/RR036A.pdf). We evaluated mRNA expression level using qRT-PCR technology with the SYBR Green QuantiTect RT-PCR Kit (TaKaRa Biotechnology Co. Ltd.) and a 7500 Real-Time PCR System (Applied Biosystems Inc.). The qRT-PCR was conducted as described in “Mitochondrial DNA Quantification.” The relative expression of each target gene was normalized to 2 reference genes, β-actin and GAPDH, and calculated using the 2−ΔΔCt method. For in vivo qRT-PCR experiments, the qRT-PCR reaction was performed in triplicate for each cow and 15 cows were included per group. For in vitro qRT-PCR experiments, the qRT-PCR reaction was performed 15 times in each group. The primers used for peroxisome proliferator-activated receptor-α (PPARA), acetyl-CoA oxidase (ACO), carnitine palmitoyltransferase 1A (CPTIA), sterol regulatory element-binding protein-1c (SREBP1c), acetyl CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), β-actin, GAPDH, and CO 1-V are shown in Table 3. The cycles-to-threshold values of β-actin and GAPDH were not affected by liver fat content and PA treatment, findings that validated their usefulness as a control gene (Morey et al., 2011; Du et al., 2017a, 2018; Supplemental Figure S1, https://doi.org/10.3168/jds.2018-14546).

Table 3. Primers used during quantitative reverse-transcription PCR assay

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primers2 (5′−3′)</th>
<th>GeneBank number</th>
<th>Length (bp)</th>
<th>Annealing temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPARA</td>
<td>For: TCAGATGGCTCCGGTTATT Rev: CCGCGACATCTTACACT</td>
<td>XM_341399</td>
<td>132</td>
<td>60</td>
</tr>
<tr>
<td>ACO</td>
<td>For: TAAAGCTTTCGACAGGTATT Rev: ATGGTCCCGTAGGTCAG</td>
<td>NC_015500.1</td>
<td>189</td>
<td>60</td>
</tr>
<tr>
<td>CPT1A</td>
<td>For: ACGCCGGTGGAAT AGT AACC CT Rev: CCAAAAATGCGGTTGTCCTT</td>
<td>NC_007330.4</td>
<td>188</td>
<td>60</td>
</tr>
<tr>
<td>SREBP1c</td>
<td>For: GCAGCCCATTCATCAGCCAGACC Rev: GCAGACCCAGCAGCTCAACAGC</td>
<td>NM_00113302.1</td>
<td>119</td>
<td>60</td>
</tr>
<tr>
<td>ACC1</td>
<td>For: TCGTGAATATCCTCAAGGAGCT Rev: CGACGTTTTCGACAGATGATG</td>
<td>NM_174224.2</td>
<td>95</td>
<td>60</td>
</tr>
<tr>
<td>FAS</td>
<td>For: CAGCTTGGTGTTGGCCAGAAG Rev: AGGGGAGCTGAGGTTGTC</td>
<td>NM_001012669.1</td>
<td>144</td>
<td>60</td>
</tr>
<tr>
<td>mtDNA</td>
<td>For: CGCGGTCATAGGATACACC Rev: AACCCTATGGAATATGTTGCTT</td>
<td>NM_U01920.1</td>
<td>74</td>
<td>60</td>
</tr>
<tr>
<td>nDNA</td>
<td>For: GGTCTGGCAGCATTGCTGCAT Rev: TGCCATGCGAAAAGAATGG</td>
<td>NM_178320.2</td>
<td>73</td>
<td>60</td>
</tr>
<tr>
<td>β-Actin</td>
<td>For: TATGGACTGGAGACCCGAGAG Rev: GCTCTCTTGGAACACTTGAACCA</td>
<td>BC142413.1</td>
<td>101</td>
<td>60</td>
</tr>
<tr>
<td>CO I</td>
<td>For: TGGGATCATATGGGAGAG Rev: GCTCTCTTTGGAACACTTGAACCA</td>
<td>NM_205817.1</td>
<td>162</td>
<td>60</td>
</tr>
<tr>
<td>CO II</td>
<td>For: CAGAACCGTCTCCTTCTGC Rev: ACTGCTAAGAACCCTCTTCTTG</td>
<td>NM_174178.2</td>
<td>106</td>
<td>60</td>
</tr>
<tr>
<td>CO III</td>
<td>For: TCTCTTGTGTCTGCTCTGCT Rev: TCTCTCGTCTGCTGAGATT</td>
<td>NM_174630.2</td>
<td>197</td>
<td>60</td>
</tr>
<tr>
<td>CO IV</td>
<td>For: ATCTCTGGGCTTTTTTGGTTGTC Rev: GGCTGTCGTCGATGCTTCTC</td>
<td>NM_001077831.2</td>
<td>334</td>
<td>60</td>
</tr>
<tr>
<td>CO V</td>
<td>For: TCCAGGCTGGCACGACTAT Rev: TGCCACTCCAGGGCAATTTAG</td>
<td>NM_175796.3</td>
<td>148</td>
<td>60</td>
</tr>
<tr>
<td>GAPDH</td>
<td>For: GTCTCCATACCATGAGGAGG Rev: TCATGGATGACCTTGGCCAG</td>
<td>NM_001034034</td>
<td>197</td>
<td>60</td>
</tr>
</tbody>
</table>

1PPARA = peroxisome proliferator-activated receptor-α; ACO = acyl-CoA oxidase; CPTIA = carnitine palmitoyltransferase 1A; SREBP1c = sterol regulatory element-binding protein-1c; ACC1 = acetyl CoA carboxylase 1; FAS = fatty acid synthase; mtDNA = mitochondrial DNA; nDNA = nuclear DNA; CO I = complex I; CO II = complex II; CO III = complex III; CO IV = complex IV; CO V = complex V.

2For = forward; Rev = reverse.
Western blotting was performed as previously described (Du et al., 2017b; Sun et al., 2017). The liver (~30 mg) and hepatocyte total proteins were extracted using a protein extraction kit (C510003; Sangon Biotech Co. Ltd., Shanghai, China; http://www.sangon.com/productImage/DOC/C510003/C510003_ZH_P.pdf). Total protein concentration was estimated by the BCA method (P1511; Applygen Technologies Inc.). A total of 30 μg of protein from each sample was separated by 12% SDS-PAGE and electrophoretically transferred to a polyvinylidene difluoride membrane. The membranes were blocked in 3% BSA/Tris-buffered saline/Tween (TBS-T) buffer for 4 h. The blocked membranes were incubated overnight at 4°C with primary antibodies against PPARα (1:1,000; ab8934), cytochrome c oxidase subunit IV (COX IV; 1:1,000; ab14744), voltage-dependent anion channel 1 (VDAC1; 1:1,000; ab15895), peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1cα; 1:1,000; ab54481), mitofusin-2 (MFN2; 1:1,000; ab56889), nuclear respiratory factor 1 (NRF1; 1:1,000; ab154269), β-actin (1:2,000; ab8226; Abcam, Cambridge, MA), mitochondrial transcription factor A (TFAM; 1:200; sc166965; Santa Cruz Biotechnology, Santa Cruz, CA), and SREBP-1c, a master regulator of lipogenic pathway, and the mRNA expression levels of hepatic SREBP-1c, a master regulator of lipogenic pathway, and the mRNA expression levels of ACC1 (P < 0.01) and FAS (P < 0.05) were higher in dairy cows with mild fatty liver than in control cows (Figure 2A, B, and D; Supplemental Figure S2, https://doi.org/10.3168/jds.2018-14546). These data indicate that dairy cows with mild fatty liver display increased hepatic lipid synthesis compared with healthy cows.

Moreover, the protein (P < 0.05) and mRNA (P < 0.01) expression levels of PPARα and the mRNA expression levels of lipid oxidation genes, ACO and CPT1A (P < 0.05), were also significantly increased in the liver of dairy cows with mild fatty liver (Figure 2A, B, and C). These data indicate that dairy cows with mild fatty liver display increased lipid oxidation in the liver.

Hepatic Mitochondria Status in Healthy Cows and Dairy Cows with Mild Fatty Liver

The hepatic mtDNA content was increased (P < 0.05) in dairy cows with mild fatty liver (Figure 3A). Our results showed that the hepatic protein levels of COX IV (the inner mitochondrial membrane marker; P < 0.05) and VDAC1 (the outer mitochondrial membrane marker; P < 0.01) were increased in dairy cows with mild fatty liver compared with healthy cows (Figure 3B and C; Supplemental Figure S3, https://doi.org/10.3168/jds.2018-14546). The protein levels of mitochondrial function regulators, PGC-1cα and NRF1,
were higher \((P < 0.05)\) in the liver of dairy cows with mild fatty liver than in control cows (Figure 3B and C). However, the protein levels of MFN2 and TFAM were not significantly different between dairy cows with mild fatty liver and healthy cows (Figure 3B and C). In addition, we found that the mRNA levels of \(CO 1-V\) \((P < 0.05)\) and ATP content \((P < 0.01)\) were all increased in the livers of dairy cows with mild fatty liver compared with healthy cows (Figure 3D and E). More important, ultrastructural analysis revealed an increased number and volume of mitochondria in the liver of dairy cows with mild fatty liver (Figure 4). Taken together, these data demonstrate that number of mitochondria and ATP production were increased in the liver of dairy cows with mild fatty liver.

Effects of PA on Lipid Synthesis and Oxidation in Calf Hepatocytes

We found that PA treatment increased the intracellular TG content gradually and was significantly higher in the 100 and 200 \(\mu M\) PA groups (Figure 5A). The oil-red O staining also showed similar results (Figure 5B and C). The mRNA and protein expression levels of SREBP-1c and PPARα and mRNA expression levels of \(ACO\) and \(CPT1A\) were increased gradually and

![Figure 1](image-url)

Figure 1. Liver histology and triglyceride (TG) content in control cows and dairy cows with mild fatty liver. (A) Representative images of hematoxylin–eosin (H&E) and oil-red O staining of liver sections. (B) Quantification of oil-red O staining. (C) Hepatic TG content in control cows \((n = 15)\) and dairy cows with mild fatty liver \((n = 15)\). Data were analyzed with paired \(t\)-tests and expressed as mean \(\pm\) SEM. Color version available online.
significantly higher in the PA-treated groups than in the control group (Figure 5D, E, F, and G; Supplemental Figure S4, https://doi.org/10.3168/jds.2018-14546). Furthermore, the mRNA expression levels of ACC1 and FAS were significantly increased in 100 and 200 μM PA-treated groups compared with the control group (Figure 5G). The expression changes of PPARα and SREBP1c were similar between PA-treated adult bovine hepatocytes and calf hepatocytes (Supplemental Figure S5, https://doi.org/10.3168/jds.2018-14546). These results demonstrate that PA increases lipid synthesis and oxidation in calf hepatocytes.

Effects of PA on Mitochondria Status in Calf Hepatocytes

To investigate the effects of PA on mitochondria, calf and adult bovine hepatocytes were treated with different concentrations of PA. Following treatment with PA, the mtDNA content increased gradually in a PA dose-dependent manner, and it was significantly higher in the PA treatment groups than in the control group (Figure 6A; Supplemental Figure S6A, https://doi.org/10.3168/jds.2018-14546). The protein levels of PGC-1α, NRF1, and TFAM were significantly increased in PA-treated groups (Figure 6B and C). However, the protein level of MFN2 was significantly decreased in PA-treated groups (Figure 6B and C). Furthermore, our results showed that 100 and 200 μM PA treatment increased the mRNA levels of CO1-V (Figure 6D). More important, the intracellular ATP content was increased gradually and markedly higher in the 100 and 200 μM PA treatment groups than in the control group (Figure 6E; Supplemental Figure S6B, https://doi.org/10.3168/jds.2018-14546). These data indicate that PA increase mitochondria content and ATP production in calf hepatocytes.

DISCUSSION

Major physiological, nutritional, metabolic, and immunological changes occur within the transition period, and tremendous metabolic and endocrine adjustments must be made as dairy cows move from late gestation to early lactation (Sundrum, 2015; McCarthy et al., 2016). Lipid mobilization of adipose tissue is an efficient physiological adaptation in dairy cows to support en-
ergy demands during the transition period (Ingvartsen and Moyes, 2013). Increased lipid mobilization results in a large increase in blood fatty acids concentration, and excessive blood fatty acids are taken up by the liver (Akbar et al., 2015; Sundrum, 2015). Therefore, the liver must adapt quickly to provide the increased energy demand and to process the flood of fatty acids taken up from extensive mobilization of adipose TG. Our data demonstrated that hepatic lipid synthesis and oxidation, number of mitochondria, and ATP production were enhanced in dairy cows with mild fatty liver, indicating that the hepatic adaptive capacity was increased in dairy cows with fatty liver.

Fatty liver develops when the hepatic synthesis of lipid exceeds the oxidation and secretion of lipids by the liver (Bobe et al., 2004). In this study, we observed that dairy cows with mild fatty liver displayed hepatic lipid accumulation. More important, SREBP-1c and its target genes ACC1 and FAS were markedly enhanced in cows with mild fatty liver. The transcription factor SREBP-1c plays a crucial role in the regulation of lipid synthesis by stimulating the expression of lipogenic genes, such as ACC1 and FAS (Shimomura et al., 1999; Liu et al., 2014; Li et al., 2015). Our previous study also showed that the hepatic protein and mRNA levels of SREBP-1c, ACC1, and FAS were significantly higher in cows with hepatic steatosis (mild, moderate, and severe fatty liver) than in healthy cows (Li et al., 2015). Several studies indicated that mRNA abundances of hepatic FAS and ACC1 were higher in early lactation than in late gestation (Graber et al., 2010; Gross et al., 2013). Consequently, increased SREBP-1c and its target gene expression reflect the increased lipogenesis and participate in the lipid accumulation in the liver of cows with mild fatty liver.

Energy demands increase approximately 2- to 3-fold in early-lactating cows (Drackley et al., 2001). Fatty acids can be used as energy substrate for β-oxidation in the mitochondria (Contreras and Sordillo, 2011). Peroxisome proliferator-activated receptor-α is a ligand-activated transcription factor that plays a key role in the regulation of expression of fatty acid...
oxidation genes, including CPT1A and ACO (Ntambi et al., 2002; Lee et al., 2006; König et al., 2009). Our experiment found that the expression levels of PPARα and its target genes ACO and CPT1A were markedly increased in the liver of cows with mild fatty liver. Weber et al. (2013) observed increased hepatic mRNA expression of PPARα and CPT1A in dairy cows with high liver fat content, which was in agreement with our study. Our study also showed that dairy cows with mild fatty liver displayed higher blood concentration of BHB than healthy cows. Interestingly, the study from van Dorland et al. (2009) indicated that dairy cows with high blood concentration of BHB displayed increased hepatic mRNA expression of PPARα and CPT1A compared with dairy cows with low blood concentration of BHB in early lactation, which further supported our results. Taken together, previous studies and our data demonstrated that dairy cows with mild fatty liver displayed increased hepatic lipid oxidation and adaptive performance.

Mitochondria produce about 90% of the cellular ATP, and many metabolic processes occur in mitochondria, including β-oxidation and ketogenesis (Sunny et al., 2017). Our previous study demonstrated that dairy cows with severe fatty liver displayed mitochondria dysfunction (Gao et al., 2018). However, few studies in-

Figure 4. Ultrastructural analysis of liver sections. (A) Hepatic ultrastructural analysis of control cows. (B, C) Hepatic ultrastructural analysis of dairy cows with mild fatty liver.

M: mitochondrion
LD: lipid droplet
N: nucleus
HEPATIC ADAPTIVE MECHANISM OF COWS WITH MILD FATTY LIVER

Investigated hepatic mitochondria function in dairy cows with mild fatty liver. The copy number of the mtDNA and the expression of COX IV and VDAC1 reflect the abundance of mitochondria (Laubenthal et al., 2016). In our study, we first found that hepatic mtDNA and protein levels of COX IV and VADCI were increased in

Figure 5. Effects of palmitic acids (PA) on lipid metabolism in calf hepatocytes. Calf hepatocytes were treated with various concentrations of PA (0, 50, 100, and 200 μM) for 12 h. (A) Triglyceride (TG) content in calf hepatocytes. (B) Oil-red O staining of calf hepatocytes. (C) Quantification of oil-red O staining. (D) Protein levels of peroxisome proliferator-activated receptor-α (PPARα), sterol regulatory element-binding protein 1c (SREBP-1c), and β-actin in calf hepatocytes. Representative blots are shown. (E) Quantification of protein levels of PPARα and SREBP-1c. (F) Relative mRNA levels of PPARA, acetyl-CoA oxidase (ACO), and carnitine palmitoyltransferase 1A (CPT1A) in calf hepatocytes. (G) Relative mRNA levels of SREBP1c, acetyl CoA carboxylase 1 (ACCI), and fatty acid synthase (FAS) in calf hepatocytes. Comparisons among groups were calculated using a 1-way ANOVA with subsequent Bonferroni correction. Data were expressed as mean ± SEM *P < 0.05; **P < 0.01. Color version available online.

Figure 6. Effects of palmitic acids (PA) on mitochondria in calf hepatocytes. Calf hepatocytes were treated with various concentrations of PA (0, 50, 100, and 200 μM) for 12 h. (A) Relative mitochondrial DNA (mtDNA) content in calf hepatocytes. (B) Protein levels of peroxisome proliferator activated receptor-γ coactivator-1α (PGC-1α), mitofusin-2 (MFN2), mitochondrial transcription factor A (TFAM), nuclear respiratory factor 1 (NRF1), cytochrome c oxidase subunit IV (COX IV), voltage-dependent anion channel 1 (VDAC1), and β-actin in calf hepatocytes. Representative blots are shown. (C) Quantification of protein levels of PGC-1α, MFN2, TFAM, NRF1, COX IV, and VDAC1. (D) Relative mRNA levels of complexes I to V (CO-I-V) in calf hepatocytes. (E) Adenosine triphosphate (ATP) content in calf hepatocytes. (F) MitoTracker (Life Technologies, Carlsbad, CA) staining of calf hepatocytes. DAPI was used to stain nuclei and indicated nuclei in (F). Merge indicated that nuclei and MitoTracker staining were combined into one figure. Comparisons among groups were calculated using a 1-way ANOVA with subsequent Bonferroni correction. Data were expressed as mean ± SEM *P < 0.05; **P < 0.01. nDNA = nuclear DNA. Color version available online.
dairy cows with mild fatty liver. In addition, ultrastructural analysis revealed an increased number and volume of mitochondria in the liver of dairy cows with mild fatty liver. Chiche et al. (2010) reported that enlarged mitochondria were functional as they conserved their ATP production. Our results also demonstrated that dairy cows with mild fatty liver displayed increased hepatic ATP content. These results demonstrate that the number of mitochondria and ATP production are increased in the liver of dairy cows with mild fatty liver. More important, these changes in mitochondria indicate that hepatic mitochondria of dairy cows with mild fatty liver can metabolize more fatty acids and provide more energy to rescue the energy deficit and adapt to metabolic changes in the transition period.

In this study, the hepatic lipid synthesis, TG content, lipid oxidation, and mitochondrial function were all higher in cows with mild fatty liver than in healthy cows. This contradictory phenomenon results from high concentrations of fatty acids in cows with mild fatty liver. Dairy cows in the transition period generally have negative energy balance and high concentrations of fatty acids and display lipotoxicity, which is defined as lipid- and lipid metabolite-induced lean tissue dysfunction (Weber et al., 2013; Ertunc and Hotamisligil, 2016). Therefore, to provide energy and defeat fatty acid-induced lipotoxicity, the liver must enhance mitochondrial function and lipid oxidation. Nevertheless, when enhanced mitochondrial function and lipid oxidation could not metabolize overloaded fatty acids, fatty acids would re-esterify and be stored as TG in the liver. This may explain the discrepancy that dairy cows with mild fatty liver had increased hepatic lipid oxidation and enhanced mitochondrial function and lipid synthesis.

Increased number of mitochondria and ATP production reflect enhanced adaptive capacity of dairy cows with mild fatty liver; however, the detail molecular mechanisms underlying this adaptation are not clearly understood. Peroxisome proliferator activated receptor-γ coactivator-1α coordinates numerous genes needed for mitochondrial function and biogenesis by regulating the activity of several nuclear transcription factors, such as NRF1 and TFAM (Laubenthal et al., 2016, 2017). In our study, the protein expression of hepatic PGC-1α, NRF1, and TFAM was increased in dairy cows with mild fatty liver. We speculated that upregulation of PGC-1α, NRF1, and TFAM might promote the increased number of mitochondria and ATP production. However, our previous study indicated that protein level of PGC-1α was reduced in the liver of dairy cows with moderate or severe fatty liver compared with healthy cows (Du et al., 2017c). The discrepancies between these studies could be due to differences in the extent of fatty liver, and the adaptive capacity of hepatic mitochondrial function may have decreased in dairy cows with moderate or severe fatty liver. The oxidative phosphorylation complexes system forms the basis for mitochondrial ATP production (Boekema and Braun, 2007). In this study, we first found that mRNA expression of oxidative phosphorylation complexes (CO I-V) was increased in the liver of dairy cows with mild fatty liver, which is consistent with ATP content. Increased gene expression of CO I-V also reflects enhanced ATP production. Several studies reported that the expression and activities of oxidative phosphorylation complexes were increased in the liver of patients and mice with simple fatty liver or type 2 diabetes (Szendroedi et al., 2011; Begriche et al., 2013). These studies and our study also indicate that mitochondrial adaptation may exist in different species. Taken together, increased expression of mitochondrial function regulator and oxidative phosphorylation complexes contributes to the enhanced number of mitochondria and ATP production, which further increase the adaptive capacity of dairy cows with mild fatty liver.

Fatty acids increase sharply in the serum and liver of dairy cows after parturition and are metabolized to provide energy (Rukkwamsuk et al., 2000). However, fatty acids also displayed lipotoxicity in liver tissues (Bobe et al., 2004). Increased lipid oxidation and mitochondrial function may be an adaptive mechanism to defeat increased fatty acids concentration. Therefore, to further investigate the adaptive mechanism of mitochondria, the status of lipid metabolism and mitochondria in PA-treated calf hepatocytes was measured. We found that PA treatment could increase the expression of SREBP-1c and its target genes ACC1 and FAS and increase TG accumulation in calf hepatocytes. Furthermore, PA treatment induced the augmented expression of PPARα, ACO, and CPT1A in calf hepatocytes. More important, the number of mitochondria and ATP production; the protein expression of PGC-1α, NRF1, and TFAM; and the mRNA expression of CO I-V all increased in calf hepatocytes treated with PA. Mitofusin-2 is a mitochondrial membrane protein that participates in mitochondria fusion, and decreased of MFN2 expression was accompanied by reduced mitochondrial fusion events and increased mitochondria content (Zorzano et al., 2015). Our results showed that PA treatment significantly decreased protein expression of MFN2 and increased mitochondria content in calf hepatocytes, which is consistent with a previous study (Zorzano et al., 2015). In summary, these data indicate that hepatocytes treated with PA trigger adaptive changes, such as increased lipid synthesis and oxidation, and enhanced number of mitochondria and ATP production, which is consistent with hepatic adaptive
performance in dairy cows with mild fatty liver. In addition, increased hepatic mitochondria function is an effective mechanism to metabolize excessive fatty acids and provide energy in dairy cows with mild fatty liver.

CONCLUSIONS

The mRNA expression of lipid synthesis genes SREBP1c, ACC1, and FAS and lipid oxidation genes PPARA, ACO, and CPT1A was higher in the liver of dairy cows with mild fatty liver than in healthy cows, indicating increased hepatic lipid synthesis and oxidation. More important, the hepatic mitochondria content, mRNA levels of oxidative phosphorylation complexes, and ATP content increased in the liver of dairy cows with mild fatty liver compared with healthy cows, indicating enhanced hepatic mitochondria function. The same results were also observed in PA-treated calf hepatocytes. These changes in hepatic mitochondria and lipid metabolism may be the adaptive mechanism of dairy cows with mild fatty liver. Our study contributes to the understanding of hepatic energy metabolism around parturition, which may help develop strategies for enhancing hepatic metabolic adaptation during the transition period.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and Development Program (Beijing, China; grant no. 2016YFD0501206) and the National Natural Science Foundation of China (Beijing, China; grant no. 31402265, 31472247, 31572581, and 31672621). The authors declare no competing financial interests.

REFERENCES

