ABSTRACT
Key words
INTRODUCTION
- Holshof G.
- Evers A.
- De Haan M.
- Galama P.
- Peyraud J.L.
- Delaby L.
- Garnsworthy P.
- Wiseman J.
- Kristensen T.
- Madsen M.L.
- Noe E.
- Timmer B.
- Zom R.L.G.
- Holshof G.
- Spithoven M.
- Van Reenen C.G.
MATERIALS AND METHODS
Experimental Design, Animals, and Housing
Item | Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 |
---|---|---|---|---|
Period | Jul. 28–Sep. 27, 2014 | May 18–Jun. 7, 2015 | Aug. 31–Sep. 20, 2015 | Jun. 27–Jul. 17, 2016 |
Data sets in database (no.) | 54 | 28 | 24 | 24 |
Experimental design | Crossover block | Balanced block | Balanced block | Balanced block |
Treatment × period | 3 × 3 | 2 × 1 | 2 × 1 | 2 × 1 |
Animals (no.) | 18 | 28 | 24 | 24 |
Pasture size (ha) | 0.30 | 0.90 | 0.41, 0.06 | 0.21, 0.17 |
Herbage allowance (kg of DM/d) | 21.4 | 26.6 | 21.9 | 18.1, 14.9 |
Supplement 2 NSP = not supplemented in the barn; corn = supplemented in the barn with chopped whole-plant corn silage; corn protein = supplemented in the barn with chopped whole-plant corn silage and with protein concentrate; concentrate = supplemented in the barn with concentrate (UFA 275; UFA AG, Herzogenbuchsee, Switzerland). | NSP, corn, corn protein | NSP, concentrate | NSP | NSP, corn |
Farm management | Conventional | Organic | Conventional | Conventional |
Primiparous cows (%) | 30.0 | 64.3 | 41.7 | 25.0 |
Cow genetics | CH | CH, NZ | CH | CH |
Outdoor temperature (°C) | 14.8 (min. 10.0, max. 19.9) | 20.2 (min. 13.7, max. 26.7) | 12.9 (min. 6.8, max. 19.2) | 15.1 (min. 10.1, max.19.7) |
Daily precipitation (mm) | 6 (min. 0.1, max. 11) | 0.5 (min. 0.1, max. 2.7) | 9.6 (min. 0.1, max. 30.9) | 12.1 (min. 0.2, max. 15.3) |
Reference | Rombach et al. (2018) | Schori et al. (unpublished data) | Rombach et al. (unpublished data) | Menzi et al. (unpublished data) |
Item | Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Period 1 | Period 2 | Period 3 | Mean | SD | Low | High | NSP | SP | ||||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |||
DM (g/kg of wet weight) | 149 | 25.7 | 152 | 28.1 | 157 | 26.6 | 218 | 26.9 | 174 | 30.2 | 167 | 22.0 | 200 | 41.2 | 201 | 41.6 |
Analyzed nutrient composition (g/kg of DM) | ||||||||||||||||
OM | 887 | 8.6 | 891 | 7.2 | 889 | 8.1 | 900 | 7.1 | 902 | 4.1 | 902 | 3.1 | 908 | 2.1 | 907 | 4.9 |
CP | 169 | 15.4 | 215 | 9.6 | 212 | 6.8 | 158 | 22.8 | 240 | 26.4 | 184 | 9.9 | 179 | 8.4 | 165 | 14.8 |
ADFom | 261 | 18.7 | 206 | 11.1 | 191 | 5.7 | 221 | 27.6 | 188 | 13.5 | 218 | 10.9 | 239 | 13.3 | 245 | 18.5 |
NDFom | 418 | 71.6 | 334 | 19.2 | 301 | 18.1 | 405 | 55.4 | 328 | 28.2 | 359 | 17.7 | 428 | 31.5 | 441 | 41.2 |
Crude fiber | 187 | 19.8 | 180 | 18.8 | 192 | 21.1 | 209 | 26.0 | 167 | 12.9 | 195 | 8.8 | 218 | 11.9 | 229 | 11.9 |
Calculated energy and APDE content (per kg of DM) | ||||||||||||||||
NEL (MJ) | 6.0 | 0.22 | 6.5 | 0.07 | 6.5 | 0.08 | 6.1 | 0.33 | 6.6 | 0.14 | 6.3 | 0.07 | 6.2 | 0.09 | 6.1 | 0.15 |
ADPE (g) | 103 | 4.5 | 115 | 2.3 | 115 | 1.8 | 101 | 6.9 | 118 | 4.0 | 107 | 1.6 | 106 | 2.0 | 103 | 3.7 |
Analyzed n-alkane content (mg/kg of DM) | ||||||||||||||||
HC32 | 5.7 | 0.71 | 5.4 | 0.49 | 4.8 | 0.22 | 3.4 | 0.70 | 6.7 | 0.59 | 6.3 | 0.51 | 4.6 | 0.35 | 5.6 | 0.31 |
HC33 | 72.4 | 5.35 | 66.8 | 4.81 | 65.2 | 4.11 | 47.1 | 6.48 | 87.4 | 9.97 | 83.7 | 8.68 | 77.9 | 6.93 | 93.4 | 8.16 |
- Agroscope
Item | Experiment 1 | Experiment 2 | Experiment 4 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CS | Protein | CS + protein | Concentrate | CS | ||||||
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
DM (g/kg of wet weight) | 398 | 33.8 | 882 | 23.9 | 485 | 32.0 | 885 | — | 405 | 3.4 |
Analyzed nutrient composition (g/kg of DM) | ||||||||||
OM | 971 | 0.5 | 943 | 0.2 | 966 | 0.4 | 946 | — | 975 | 1.0 |
CP | 72 | 5.7 | 562 | 6.6 | 160 | 5.9 | 115 | 89 | 3.2 | |
ADFom | 194 | 29.3 | 76 | 3.0 | 173 | 24.6 | 73 | — | 206 | 10.5 |
NDFom | 351 | 49.7 | 316 | 34.8 | 345 | 41.0 | 195 | — | 389 | 25.0 |
Crude fiber | 163 | 23.8 | 34 | 0.1 | 140 | 19.5 | 47 | — | 164 | 22.1 |
Calculated energy and APDE content (per kg of DM) | ||||||||||
NEL (MJ) | 6.9 | 0.24 | 7.5 | — | 7.2 | 0.20 | 7.0 | — | 7.0 | 0.17 |
APDE (g) | 70 | 3.74 | 295 | — | 111 | 3.07 | 85 | — | 74 | 0.82 |
Analyzed n-alkane content (mg/kg of DM) | ||||||||||
HC32 | 1.1 | 0.21 | 1.3 | 1.22 | 1.1 | 0.21 | ND | — | 0.8 | 0.03 |
HC33 | 9.7 | 1.43 | 0.4 | 0.27 | 8.0 | 1.23 | 1.7 | — | 10.4 | 0.82 |
- Agroscope
Data Recording and Sample Collection
Laboratory Analysis
Calculations and Data Analysis
- Agroscope
- Agroscope
where HDMI represents the daily HDMI (kg); F33, H33, P33, CN33, and CR33 are the concentrations of tritriacontane (mg/kg of DM) in feces, herbage, protein supplement, concentrate, and chopped whole-plant corn silage, respectively; F32, H32, P32, CN32, and CR32 are the concentrations of HC32 (mg/kg of DM) in feces, herbage, protein supplement, concentrate, and chopped whole-plant corn silage consumed, respectively; P, CN, and CR are the amounts (kg of DM/d) of consumed protein supplement, concentrate, and chopped whole-plant corn silage, respectively; and A32 is the daily dose of HC32 (mg/d) administered via the alkane capsules.
Item | Mean | Minimum | Maximum | SD of mean |
---|---|---|---|---|
Pasture variables | ||||
Postgrazing herbage mass (kg of DM/ha) | 222 | 63 | 554 | 143.4 |
Pregrazing herbage mass (kg of DM/ha) | 1,206 | 589 | 2,333 | 628.5 |
Residence time on pasture (h/d) | 18 | 15 | 19 | 1.2 |
Herbage allowance (kg of DM/cow per d) | 23.6 | 11.1 | 38.9 | 9.28 |
Herbage variables | ||||
CP (g/kg of DM) | 187 | 158 | 240 | 27.1 |
Ash (g/kg of DM) | 102 | 92 | 122 | 9.1 |
Intake variables (kg/d) | ||||
Herbage DMI | 12.4 | 4.7 | 20.4 | 2.93 |
Protein or concentrate intake | 0.8 | 0.0 | 4.0 | 1.18 |
Corn silage intake, | 3.7 | 0.0 | 7.9 | 3.08 |
Animal variables | ||||
BW (kg) | 610 | 428 | 719 | 58.3 |
Lactation number | 2.7 | 1.0 | 9.0 | 1.92 |
Milk yield and content | ||||
Milk yield (kg/d) | 23.3 | 14.0 | 38.0 | 4.56 |
Fat (%) | 4.1 | 2.7 | 5.6 | 0.57 |
Protein (%) | 3.3 | 2.4 | 3.9 | 0.28 |
Lactose (%) | 4.6 | 4.0 | 5.2 | 0.21 |
Daily behavioral characteristics | ||||
Total eating time (min/d) | 613 | 441 | 742 | 57.4 |
Prehension bites (no./d) | 30,165 | 11,784 | 41,346 | 6,578.4 |
Total eating chews (no./d) | 44,027 | 31,668 | 54,174 | 4,495.2 |
Bite rate (total eating bites/min) | 72 | 62 | 80 | 3.5 |
Bite mass (DMI/prehension bites) | 0.54 | 0.27 | 1.60 | 0.216 |
Daily behavioral characteristics performed at pasture | ||||
Total eating time (min/d) | 548 | 355 | 691 | 62.4 |
Prehension bites (no./d) | 28,757 | 11,037 | 40,304 | 6,664.4 |
Total eating chews (no./d) | 40,004 | 26,225 | 48,710 | 4,842.2 |
Bite rate (total eating bites/min) | 73 | 62 | 81 | 3.7 |
Bite mass (herbage DMI/prehension bites) | 0.47 | 0.26 | 1.04 | 0.136 |
Head down (min/d) | 667 | 179 | 956 | 118.9 |
where y represents the average daily HDMI (kg/cow) over 1 wk; µ is the model mean; and V1, V2, …, Vn are the explanatory variables with the corresponding coefficients C1, C2, …, Cn.
RESULTS
HDMI Estimation Under a GA
Item | Coefficient | SE | β | 95% CI | P-value | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Model mean μ | 11.27 | 6.182 | 0 | −0.9954 | 23.5393 | 0.071 |
Protein or concentrate intake (kg of DM/d) | −1.09 | 0.153 | −0.393 | −1.3944 | −0.7865 | <0.001 |
Corn silage intake (kg of DM/d) | −0.64 | 0.047 | −0.646 | −0.7369 | −0.5497 | <0.001 |
Milk lactose (%) | −2.52 | 0.740 | −0.187 | −3.9876 | −1.0497 | <0.001 |
Lactation number | −0.29 | 0.091 | −0.191 | −0.46686 | −0.1055 | 0.002 |
Herbage CP (g/kg of DM) | −0.03 | 0.006 | −0.265 | −0.0388 | −0.0150 | <0.001 |
Postgrazing herbage mass (kg of DM/ha) | −0.004 | 0.0010 | −0.180 | −0.0056 | −0.0015 | <0.001 |
Bite rate (total eating bites/min) | −0.08 | 0.038 | −0.101 | −0.1514 | −0.0015 | 0.046 |
BW (kg) | 0.008 | 0.0034 | 0.170 | 0.0012 | 0.0148 | 0.021 |
Milk protein (%) | 4.24 | 0.595 | 0.410 | 3.0599 | 5.4208 | <0.001 |
Milk yield (kg/d) | 0.35 | 0.037 | 0.570 | 0.2786 | 0.4272 | <0.001 |
HDMI Estimation Model Under an Approach Without Knowledge of the Supplements Fed
Item | Coefficient | SE | β | 95% CI | P-value | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Model mean μ | −1.01 | 7.730 | 0 | −16.3488 | 14.3387 | 0.897 |
Milk lactose (%) | −3.18 | 0.868 | −0.236 | −4.9019 | −1.4573 | <0.001 |
Lactation number | −0.30 | 0.115 | −0.199 | −0.5278 | −0.0701 | 0.011 |
Herbage CP (g/kg of DM) | −0.02 | 0.007 | −0.209 | −0.0353 | 0.0070 | 0.003 |
Total eating chews (no./d) | −0.0003 | 0.00007 | −0.488 | −0.0005 | −0.0002 | <0.001 |
Total eating time (min/d) | 0.03 | 0.005 | 0.636 | 0.0186 | 0.039 | <0.001 |
Prehension bites (no./d) | −0.0009 | 0.00027 | −1.994 | −0.0014 | −0.0003 | 0.002 |
Prehension bites (no./d) | 0.001 | 0.00027 | 2.475 | 0.0005 | 0.0016 | <0.001 |
Milk protein (%) | 1.78 | 0.712 | 0.172 | 0.3683 | 3.1930 | 0.014 |
Herbage ash (g/kg of DM) | 0.10 | 0.034 | 0.236 | 0.0331 | 0.1667 | 0.004 |
Milk yield (kg/d) | 0.13 | 0.045 | 0.216 | 0.0442 | 0.2236 | 0.004 |
BW (kg) | 0.01 | 0.004 | 0.265 | 0.0052 | 0.0197 | 0.001 |
Validation of the HDMI Estimation Models
Item | GA | WSB | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
Pasture variables | ||||||||||||||||||||
Postgrazing herbage mass (kg of DM/ha) | x | x | x | x | x | x | x | |||||||||||||
Herbage variables (g/kg of DM) | ||||||||||||||||||||
CP | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||
Ash | x | x | x | x | x | x | x | |||||||||||||
Intake variables (kg/d) | ||||||||||||||||||||
Chopped whole-plant corn silage intake | x | x | x | x | x | x | x | x | x | x | ||||||||||
Protein or concentrate intake | x | x | x | x | x | x | x | x | x | x | ||||||||||
Animal variables | ||||||||||||||||||||
BW (kg) | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||
Lactation number | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
Milk yield and content | ||||||||||||||||||||
Milk yield (kg/d) | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||
Fat (%) | x | x | ||||||||||||||||||
Protein (%) | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||
Lactose (%) | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||
Daily behavioral characteristics | ||||||||||||||||||||
Total eating chews (no./d) | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||
Total eating chews (no./d) | x | x | x | |||||||||||||||||
Bite rate (total eating bites/min) | x | |||||||||||||||||||
Bite rate (total eating bites/min) | x | x | x | x | ||||||||||||||||
Prehension bites (no./d) | x | x | x | x | x | x | x | x | ||||||||||||
Prehension bites (no./d) | x | x | x | x | x | x | x | x | x | x | ||||||||||
Total eating time (min/d) | x | x | x | x | x | x | x | x | x | x | ||||||||||
Head down time (min/d) | x | |||||||||||||||||||
Accuracy of evaluated models | ||||||||||||||||||||
No. | 130 | 130 | 130 | 130 | 130 | 130 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 106 |
Multiple R | 0.85 | 0.86 | 0.86 | 0.87 | 0.88 | 0.88 | 0.90 | 0.90 | 0.91 | 0.91 | 0.79 | 0.81 | 0.82 | 0.83 | 0.83 | 0.84 | 0.84 | 0.85 | 0.86 | 0.86 |
Squared multiple R (R2) | 0.72 | 0.74 | 0.75 | 0.76 | 0.77 | 0.77 | 0.81 | 0.81 | 0.82 | 0.83 | 0.62 | 0.65 | 0.67 | 0.68 | 0.69 | 0.70 | 0.71 | 0.73 | 0.74 | 0.74 |
Adjusted squared multiple R | 0.71 | 0.73 | 0.73 | 0.74 | 0.75 | 0.75 | 0.79 | 0.79 | 0.80 | 0.80 | 0.60 | 0.63 | 0.65 | 0.66 | 0.66 | 0.67 | 0.68 | 0.70 | 0.71 | 0.71 |
Standard error of the estimate | 1.58 | 1.54 | 1.52 | 1.49 | 1.47 | 1.46 | 1.31 | 1.31 | 1.28 | 1.26 | 1.80 | 1.72 | 1.69 | 1.66 | 1.65 | 1.63 | 1.60 | 1.56 | 1.54 | 1.54 |
RMSPE(bootstrapping) | 1.62 | 1.59 | 1.57 | 1.55 | 1.53 | 1.52 | 1.38 | 1.39 | 1.36 | 1.34 | 1.85 | 1.78 | 1.75 | 1.73 | 1.73 | 1.71 | 1.68 | 1.64 | 1.65 | 1.65 |
RPE | 13.1 | 12.8 | 12.7 | 12.5 | 12.3 | 12.3 | 11.1 | 11.2 | 11.0 | 10.8 | 14.9 | 14.4 | 14.1 | 14.0 | 14.0 | 13.8 | 13.5 | 13.2 | 13.3 | 13.3 |

DISCUSSION
HDMI Estimation Using the n-Alkane Method

Variables Used for HDMI Estimation Models
- Timmer B.
- Zom R.L.G.
- Holshof G.
- Spithoven M.
- Van Reenen C.G.
- Timmer B.
- Zom R.L.G.
- Holshof G.
- Spithoven M.
- Van Reenen C.G.
- Timmer B.
- Zom R.L.G.
- Holshof G.
- Spithoven M.
- Van Reenen C.G.
- Timmer B.
- Zom R.L.G.
- Holshof G.
- Spithoven M.
- Van Reenen C.G.
Gruber, L., F. J. Schwarz, D. Erdin, B. Fischer, H. Spiekers, H. Steingass, U. Meyer, A. Chassot, T. Jilg, A. Omermaier, and T. Gruggenberg. 2005. Vorhersage der Futteraufnahme von Milchkühen Datenbasis von 10 Forschungs- und Universitätsinstituten Deutschlands, Österreichs and der Schweiz. 116. VDLUFA-Kongress, Rostock, Germany.
- Delagarde R.
- O'Donovan M.
- Peyraud J.L.
- Delaby L.
- Garnsworthy P.
- Wiseman J.
Gruber, L., F. J. Schwarz, D. Erdin, B. Fischer, H. Spiekers, H. Steingass, U. Meyer, A. Chassot, T. Jilg, A. Omermaier, and T. Gruggenberg. 2005. Vorhersage der Futteraufnahme von Milchkühen Datenbasis von 10 Forschungs- und Universitätsinstituten Deutschlands, Österreichs and der Schweiz. 116. VDLUFA-Kongress, Rostock, Germany.
- Peyraud J.L.
- Delaby L.
- Garnsworthy P.
- Wiseman J.
- Delagarde R.
- O'Donovan M.
- Delagarde R.
- O'Donovan M.
Gruber, L., F. J. Schwarz, D. Erdin, B. Fischer, H. Spiekers, H. Steingass, U. Meyer, A. Chassot, T. Jilg, A. Omermaier, and T. Gruggenberg. 2005. Vorhersage der Futteraufnahme von Milchkühen Datenbasis von 10 Forschungs- und Universitätsinstituten Deutschlands, Österreichs and der Schweiz. 116. VDLUFA-Kongress, Rostock, Germany.
Gruber, L., F. J. Schwarz, D. Erdin, B. Fischer, H. Spiekers, H. Steingass, U. Meyer, A. Chassot, T. Jilg, A. Omermaier, and T. Gruggenberg. 2005. Vorhersage der Futteraufnahme von Milchkühen Datenbasis von 10 Forschungs- und Universitätsinstituten Deutschlands, Österreichs and der Schweiz. 116. VDLUFA-Kongress, Rostock, Germany.
- Delagarde R.
- O'Donovan M.
Gruber, L., F. J. Schwarz, D. Erdin, B. Fischer, H. Spiekers, H. Steingass, U. Meyer, A. Chassot, T. Jilg, A. Omermaier, and T. Gruggenberg. 2005. Vorhersage der Futteraufnahme von Milchkühen Datenbasis von 10 Forschungs- und Universitätsinstituten Deutschlands, Österreichs and der Schweiz. 116. VDLUFA-Kongress, Rostock, Germany.
Precision of the HDMI Estimation Models
- Timmer B.
- Zom R.L.G.
- Holshof G.
- Spithoven M.
- Van Reenen C.G.
- Delagarde R.
- O'Donovan M.
Gruber, L., F. J. Schwarz, D. Erdin, B. Fischer, H. Spiekers, H. Steingass, U. Meyer, A. Chassot, T. Jilg, A. Omermaier, and T. Gruggenberg. 2005. Vorhersage der Futteraufnahme von Milchkühen Datenbasis von 10 Forschungs- und Universitätsinstituten Deutschlands, Österreichs and der Schweiz. 116. VDLUFA-Kongress, Rostock, Germany.
CONCLUSIONS
REFERENCES
- Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer (Feeding recommendations and nutrient tables for ruminants).http://www.agroscope.admin.ch/futtermitteldatenbank/04834/index.html?lang=deDate: 2006Date accessed: September 8, 2014
- Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer (Feeding recommendations and nutrient tables for ruminants).http://www.agroscope.admin.ch/futtermitteldatenbank/04834/index.html?lang=deDate: 2015Date accessed: October 6, 2015
- A review on the use of sensors to monitor cattle jaw movements and behavior when grazing.Biotechnol. Agron. Soc. Environ. 2016; 20: 273-286
- Official Methods of Analysis.16th ed. AOAC International, Arlington, VA1995
- Review: Welfare of dairy cows in continuously housed and pasture-based production systems.Animal. 2017; 11 (27364762): 261-273
- Pattern of herbage intake rate and bite dimensions of rotationally grazed dairy cows as sward height declines.Grass Forage Sci. 2001; 56: 362-373
- The accuracy of intake estimation based on the use of alkane controlled-release capsules and faeces grab sampling in cows.Ann. Zootech. 2000; 49: 3-13
- Estimation of herbage consumption by grazing cattle using measurements of eating behaviour.Grass Forage Sci. 1976; 31: 81-87
- Factors affecting intake by grazing ruminants and related quantification methods: A review.Biotechnol. Agron. Soc. Environ. 2009; 13: 559-573
- Modelling of herbage intake and milk production by grazing dairy cows.in: Murphy J.J. Utilisation of Grazed Grass in Temperate Animal Systems: Proc. Satellite Workshop XXth International Grassland Congress, Cork, Ireland. Wageningen Academic Publishers, Wageningen, the Netherlands2005: 89-104
- GrazeIn: A model of herbage intake and milk production for grazing dairy cows. 3. Simulations and external validation of the model.Grass Forage Sci. 2011; 66: 61-77
- Using n-alkanes and other plant wax components to estimate intake, digestibility and diet composition of grazing/browsing sheep and goats.Small Rumin. Res. 2005; 59: 123-139
- The jackknife and the bootstrap and bootstrap confidence intervals.in: Efron B. Hastie T. Computer Age Statistical Inference. Cambridge University Press, Cambridge, UK2016: 155-204
- Alimentation des vaches laitieres.in: Alimentation des Bovins, Ovins et Caprins: Besoins des Animaux-Valeur des Aliments. Editions Quae, Versailles Cedex, France2007: 23-57
- The R Commander: A basic statistics graphical user interface to R.J. Stat. Softw. 2005; 14: 1-42
- Using the R Commander: A Point-and-Click Interface for R.CRC Press, Boca Raton, FL2017
- Rcmdr: R Commander. R package version 2.3-2.
- Evaluation of equations based on animal factors to predict intake of lactating Holstein cows.J. Dairy Sci. 1996; 79 (8899522): 1562-1571
- Predicting forage intake in extensive grazing systems.J. Anim. Sci. 2016; 94: 26-43
- Increasing demand for pasture-based dairy: What attributes and images do consumers want?.in: Freyer B. Bingen J. Re-Thinking Organic Food and Farming in a Changing World. Springer, Berlin, Germany2015: 125-140
- Changes in feeding behavior as possible indicators for the automatic monitoring of health disorders in dairy cows.J. Dairy Sci. 2008; 91 (18292258): 1017-1028
Gruber, L., F. J. Schwarz, D. Erdin, B. Fischer, H. Spiekers, H. Steingass, U. Meyer, A. Chassot, T. Jilg, A. Omermaier, and T. Gruggenberg. 2005. Vorhersage der Futteraufnahme von Milchkühen Datenbasis von 10 Forschungs- und Universitätsinstituten Deutschlands, Österreichs and der Schweiz. 116. VDLUFA-Kongress, Rostock, Germany.
- Forage use to improve environmental sustainability of ruminant production.J. Anim. Sci. 2016; 94 (27695772): 3147-3158
- Feeding behavior improves prediction of dairy cow voluntary feed intake but cannot serve as the sole indicator.Animal. 2016; 10 (26387522): 1501-1506
- Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis.2nd ed. Springer International, Cham, Switzerland2015
- rms: Regression Modeling Strategies. R package version 5.1-0.
- Comparison of methods for estimating herbage intake in grazing dairy cows.Livest. Sci. 2015; 176: 61-74
- Using plant wax markers to estimate the diet composition of grazing Holstein dairy cows.J. Dairy Sci. 2017; 100 (27939548): 1019-1036
- Grazing and difficult circumstances: Economic benefits depend on milk price and grazing efficiency.in: van den Pol-van Dasselaar A. van den Aarts H.F.M. De Vliegher A. Elgersma A. Reheul D. Reijneveld J.A. Verloop J. Hopkins A. Proc. EGF, Grassland Science in Europe, Trondheim, Norway. Wageningen Academic Publishers, Wageningen, the Netherlands2015: 236-238
- Food products—Determination of the total nitrogen content by combustion according to the Dumas principle and calculation of the crude protein content. Method 16634-1.ISO, Geneva, Switzerland2008
- Animal feeding stuffs—Determination of calcium, sodium, phosphorus, magnesium, potassium, iron, zinc, copper, manganese, cobalt, molybdenum, arsenic, lead and cadmium by ICP-AES. Method 27085.ISO, Geneva, Switzerland2009
- Energy expenditure of grazing cows and cows fed grass indoors as determined by the 13C bicarbonate dilution technique using an automatic blood sampling system.J. Dairy Sci. 2011; 94 (21426990): 1989-2000
- An evaluation of five models commonly used to predict food intake of lactating dairy cattle.Livest. Prod. Sci. 2004; 89: 129-138
- The use of grazing in intensive dairy production and assessment of farmers' attitude towards grazing.in: Schnyder H. Isselstein J. Taube F. Auerswald K. Schellberg J. Wachendorf M. Herrmann A. Gierus M. Wrage N. Hopkins A. Proc. EGF, Grassland Science in Europe, Kiel, Germany. Mecke Druck und Verlag, Duderstadt, Germany2010: 964-966
- Estimation of forage intake by ruminants on pasture.Crop Sci. 2002; 42: 869-872
- Leaps: Regression subset selection. R package version 3.0.
- The use of dosed and herbage n-alkanes as markers for the determination of herbage intake.J. Agric. Sci. 1986; 107: 161-170
- Early lactation dairy cows: Development of equations to predict intake and milk performance at grazing.Livest. Sci. 2009; 122: 214-221
- Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation.J. Dairy Sci. 2016; 99 (27720161): 9424-9440
- Predicting grass dry matter intake, milk yield and milk fat and protein yield of spring calving grazing dairy cows during the grazing season.Animal. 2013; 7 (23570842): 1379-1389
- Estimation of grass intake on pasture for dairy cows using tightly and loosely mounted di-and tri-axial accelerometers combined with bite count.Comput. Electron. Agric. 2013; 99: 227-235
- Ingestive behaviour.in: Penning P.D. Herbage Intake Handbook. British Grassland Society, Maidenhead, UK2004: 1-191
- Responses to supplementation by dairy cows given low pasture allowances in different seasons 1. Pasture intake and substitution.Anim. Sci. 2006; 82: 661-670
- N-alkanes v. ytterbium/faecal index as two methods for estimating herbage intake of dairy cows fed on diets differing in the herbage:maize silage ratio and feeding level.Animal. 2012; 6 (22436181): 232-244
- Ideal concentrate feeds for grazing dairy cows—Responses to supplementation in interaction with grazing management and grass quality.in: Garnsworthy P. Wiseman J. Recent Advances in Animal Nutrition. Nottingham University Press, Nottingham, UK2001: 203-220
- R: A Language and Environment for Statistical Computing.R Foundation for Statistical Computing, Vienna, Austria2016
- Evaluation and validation of an automatic jaw movement recorder (RumiWatch) on unsupplemented or supplemented dairy cows on pasture.J. Dairy Sci. 2018; 101 (29290426): 2463-2475
- Validation of a pressure sensor-based system for measuring eating, rumination and drinking behaviour of dairy cattle.Appl. Anim. Behav. Sci. 2016; 174: 19-23
- Comparison of techniques for estimating herbage intake of grazing dairy cows.J. Dairy Sci. 2005; 88 (15829676): 1827-1836
- Levels of pasture substitution when concentrates are fed to grazing dairy cows in northern Victoria.Anim. Prod. Sci. 2000; 40: 913-921
- The energy expenditure of 2 Holstein cow strains in an organic grazing system.J. Dairy Sci. 2014; 97 (24630659): 2789-2799
- The application of behavior sensors and sward measurement to support grazing management.in: Höglind M. Bakken A.K. Hovstad K.A. Kallioniemi E. Riley H. Steinshamn H. Østrem L. Proc. EGF, Grassland Science in Europe, Trondheim, Norway. Wageningen Academic Publishers, Wageningen, the Netherlands2016: 80-82
- The future of grazing.