ABSTRACT
Key words
INTRODUCTION
Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland. 2007. Changes in Atmospheric Constituents and in Radiative Forcing. Ar4 Climate Change 2007: The Physical Science Basis: Contribution of Working Group I To the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.W.
- Harper M.T.
- Weeks H.L.
- Branco A.F.
- Moate P.J.
- Deighton M.H.
- Williams S.R.
- Kindermann M.
- Duval S.
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.W.
- Harper M.T.
- Weeks H.L.
- Branco A.F.
- Moate P.J.
- Deighton M.H.
- Williams S.R.
- Kindermann M.
- Duval S.
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.W.
- Harper M.T.
- Weeks H.L.
- Branco A.F.
- Moate P.J.
- Deighton M.H.
- Williams S.R.
- Kindermann M.
- Duval S.
MATERIALS AND METHODS
Experimental Design
In Vitro Incubation
Sample Collection and Analysis
DNA Extraction and 16SrRNA Genes Sequencing and Analysis
Statistical Analysis
where Yij is the observed value, μ is the overall mean, Pi is the fixed effect of treatment with 3-NOP, Sj is the fixed effect of treatment with vitamin B12, PSij is the interaction effect of treatment with 3-NOP + vitamin B12, and eij is the random error. The difference was significant when P ≤ 0.05, and showed a trend when 0.05 < P ≤ 0.10.
RESULTS
Methane Production and Fermentation Characteristics
Item | 0 | NOP | P-value | ||||
---|---|---|---|---|---|---|---|
0 | VB | 0 | VB | NOP | VB | NPV | |
pH | 6.55 | 6.56 | 6.57 | 6.58 | 0.01 | 0.01 | 0.94 |
DMD | 0.72 | 0.71 | 0.71 | 0.70 | 0.46 | 0.37 | 0.86 |
Gas production (mL) | 143.3 | 139.5 | 135.9 | 134.6 | 0.02 | 0.30 | 0.61 |
CH4 (mL) | 8.15 | 7.41 | 7.41 | 7.17 | 0.03 | 0.03 | 0.26 |
Concentration (mM) | |||||||
Total VFA | 107.19 | 106.11 | 105.14 | 104.69 | 0.01 | 0.03 | 0.40 |
Acetate | 67.63 | 66.70 | 65.87 | 65.36 | 0.01 | 0.01 | 0.31 |
Propionate | 21.60 | 22.08 | 22.15 | 22.43 | 0.02 | 0.04 | 0.64 |
Isobutyrate | 1.11 | 1.09 | 1.08 | 1.06 | 0.06 | 0.21 | 0.73 |
Butyrate | 13.04 | 12.50 | 12.39 | 12.21 | 0.12 | 0.22 | 0.54 |
Isovalerate | 2.02 | 1.98 | 1.96 | 1.94 | 0.21 | 0.40 | 0.91 |
Valerate | 1.80 | 1.78 | 1.72 | 1.69 | 0.01 | 0.17 | 0.83 |
Acetate or propionate | 3.13 | 3.02 | 2.98 | 2.92 | 0.01 | 0.01 | 0.35 |
Changes of Microbial Community
Effects on Bacterial Community
Item | 0 | NOP | P-value | ||||
---|---|---|---|---|---|---|---|
0 | VB | 0 | VB | VB | NOP | NPV | |
Bacteria | |||||||
ACE | 1,604.7 | 1,568.5 | 1,609.3 | 1,587.6 | 0.11 | 0.79 | 0.52 |
Chao | 1,634.3 | 1,579.8 | 1,616.6 | 1,612.9 | 0.06 | 0.40 | 0.48 |
Coverage | 0.99 | 0.99 | 0.99 | 0.99 | 0.50 | 0.55 | 0.29 |
Shannon | 5.33 | 5.31 | 5.31 | 5.28 | 0.75 | 0.63 | 0.29 |
Simpson | 0.02 | 0.02 | 0.02 | 0.02 | 0.79 | 0.86 | 0.72 |
Archaea | |||||||
ACE | 241.0 | 227.7 | 179.7 | 284.1 | 0.79 | 0.29 | 0.44 |
Chao | 219.3 | 198.7 | 161.8 | 244.9 | 0.64 | 0.29 | 0.60 |
Coverage | 1.00 | 1.00 | 1.00 | 1.00 | 0.61 | 0.26 | 0.67 |
Shannon | 1.75 | 1.66 | 1.70 | 1.71 | 0.03 | 0.31 | 0.44 |
Simpson | 0.33 | 0.35 | 0.34 | 0.34 | 0.06 | 0.43 | 0.33 |


Item | 0 | NOP | P-value | ||||
---|---|---|---|---|---|---|---|
0 | VB | 0 | VB | NOP | VB | NPV | |
Phylum level abundance (%) | |||||||
Bacteroidota | 48.68 | 48.63 | 46.38 | 47.08 | 0.21 | 0.82 | 0.81 |
Firmicutes | 47.45 | 46.72 | 49.38 | 48.63 | 0.19 | 0.61 | 0.99 |
Actinobacteriota | 1.09 | 1.15 | 0.99 | 1.15 | 0.62 | 0.31 | 0.64 |
Proteobacteria | 0.80 | 1.11 | 1.12 | 1.06 | 0.48 | 0.55 | 0.38 |
Genus level abundance (%) | |||||||
Rikenellaceae_RC9_gut_group | 17.95 | 16.31 | 17.78 | 16.24 | 0.89 | 0.07 | 0.96 |
Prevotella | 10.89 | 12.01 | 8.75 | 10.74 | 0.19 | 0.23 | 0.74 |
Succiniclasticum | 9.16 | 10.84 | 8.75 | 9.57 | 0.46 | 0.27 | 0.70 |
Christensenellaceae_R-7_group | 6.39 | 5.87 | 6.95 | 7.29 | 0.02 | 0.82 | 0.30 |
Prevotellaceae_UCG-003 | 3.33 | 4.20 | 2.96 | 3.71 | 0.31 | 0.06 | 0.89 |
Unclassified_f__Prevotellaceae | 1.53 | 2.03 | 1.40 | 1.94 | 0.62 | 0.02 | 0.92 |
Ruminococcus | 1.57 | 1.55 | 1.73 | 1.63 | 0.42 | 0.49 | 0.76 |
Lachnospiraceae_NK3A20_group | 1.42 | 1.39 | 1.51 | 1.43 | 0.52 | 0.06 | 0.84 |
Effects on Archaeal Community


Item | 0 | NOP | P-value | ||||
---|---|---|---|---|---|---|---|
0 | VB | 0 | VB | NOP | VB | NPV | |
Species level abundance (%) | |||||||
Uncultured_archaeon_g_Methanobrevibacter | 62.62 | 65.06 | 64.18 | 65.04 | 0.22 | 0.10 | 0.24 |
Unclassified_g_Methanobrevibacter | 13.39 | 12.46 | 12.12 | 11.62 | 0.07 | 0.19 | 0.07 |
Methanobrevibacter_sp._AbM4 | 6.75 | 6.50 | 7.54 | 7.63 | 0.09 | 0.42 | 0.02 |
Uncultured_rumen_-methanogen_g_Methanobrevibacter | 7.03 | 6.73 | 6.81 | 6.73 | 0.31 | 0.26 | 0.24 |
Uncultured_methanogenic_archaeon_g_Methanobrevibacter | 6.99 | 6.30 | 6.27 | 6.02 | 0.06 | 0.07 | 0.04 |
Unclassified_g_Methanosphaera | 2.78 | 2.59 | 2.72 | 2.61 | 0.75 | 0.18 | 0.40 |
OTU level abundance (%) | |||||||
OTU893 | 55.64 | 58.03 | 56.40 | 57.07 | 0.44 | 0.10 | 0.36 |
OTU1056 | 9.05 | 8.23 | 8.02 | 7.64 | 0.08 | 0.24 | 0.02 |
OTU1125 | 6.97 | 7.03 | 7.78 | 7.97 | 0.01 | 0.93 | 0.01 |
OTU95 | 6.75 | 6.50 | 7.54 | 7.63 | 0.09 | 0.42 | 0.02 |
OTU55 | 4.68 | 4.23 | 3.98 | 3.84 | 0.01 | 0.02 | 0.01 |
OTU1147 | 3.72 | 3.48 | 3.29 | 3.17 | 0.04 | 0.26 | 0.04 |
DISCUSSION
Effects on Methanogenesis
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.W.
- Harper M.T.
- Weeks H.L.
- Branco A.F.
- Moate P.J.
- Deighton M.H.
- Williams S.R.
- Kindermann M.
- Duval S.
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.W.
- Harper M.T.
- Weeks H.L.
- Branco A.F.
- Moate P.J.
- Deighton M.H.
- Williams S.R.
- Kindermann M.
- Duval S.
Effects on Rumen Fluid Incubation
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.W.
- Harper M.T.
- Weeks H.L.
- Branco A.F.
- Moate P.J.
- Deighton M.H.
- Williams S.R.
- Kindermann M.
- Duval S.
- Hristov A.N.
- Oh J.
- Giallongo F.
- Frederick T.W.
- Harper M.T.
- Weeks H.L.
- Branco A.F.
- Moate P.J.
- Deighton M.H.
- Williams S.R.
- Kindermann M.
- Duval S.
Effects on Microbial Community
- Shi W.
- Moon C.D.
- Leahy S.C.
- Kang D.
- Froula J.
- Kittelmann S.
- Fan C.
- Deutsch S.
- Gagic D.
- Seedorf H.
- Kelly W.J.
- Atua R.
- Sang C.
- Soni P.
- Li D.
- Pinares-Patino C.S.
- McEwan J.C.
- Janssen P.H.
- Chen F.
- Visel A.
- Wang Z.
- Attwood G.T.
- Rubin E.M.
- Shi W.
- Moon C.D.
- Leahy S.C.
- Kang D.
- Froula J.
- Kittelmann S.
- Fan C.
- Deutsch S.
- Gagic D.
- Seedorf H.
- Kelly W.J.
- Atua R.
- Sang C.
- Soni P.
- Li D.
- Pinares-Patino C.S.
- McEwan J.C.
- Janssen P.H.
- Chen F.
- Visel A.
- Wang Z.
- Attwood G.T.
- Rubin E.M.
CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
- A partial life cycle assessment of the greenhouse gas mitigation potential of feeding 3-nitrooxypropanol and nitrate to cattle.Agric. Syst. 2019; 169: 14-23
- Effect of combining wheat grain with nitrate, fat or 3-nitrooxypropanol on in vitro methane production.Anim. Feed Sci. Technol. 2019; 256114237
- Effects of digestate recirculation ratios on biogas production and methane yield of continuous dry anaerobic digestion.Bioresour. Technol. 2020; 316 (32795872)123963
- metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet.Front. Microbiol. 2017; 8 (28197133): 67
- Microbiome analysis of dairy cows fed pasture or total mixed ration diets.FEMS Microbiol. Ecol. 2011; 78 (21671962): 256-265
- Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis.Cell Metab. 2016; 24 (27411015): 151-157
- Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol.Proc. Natl. Acad. Sci. USA. 2016; 113 (27140643): 6172-6177
- Whole-body propionate and glucose metabolism of multiparous dairy cows receiving folic acid and vitamin B12 supplements.J. Dairy Sci. 2017; 100 (28780092): 8578-8589
Duval, S., and M. Kindermann, inventors. 2012. Use of nitrooxy organic molecules in feed for reducing methane emission in ruminants, and/or to improve ruminant performance. World Intellectual Property Organization, Geneva, Switzerland Pat. No. WO 2012/084629 A1.
- UCHIME improves sensitivity and speed of chimera detection.Bioinformatics. 2011; 27 (21700674): 2194-2200
- Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle.J. Agric. Sci. 2008; 146: 213-233
- Prediction of methane production from dairy and beef cattle.J. Dairy Sci. 2007; 90 (17582129): 3456-3466
- Fermentation of model hemicelluloses by Prevotella strains and Butyrivibrio fibrisolvens in pure culture and in ruminal enrichment cultures.Appl. Microbiol. Biotechnol. 2017; 101 (28180916): 4269-4278
- Crystal structure of methyl-coenzyme M reductase: The key enzyme of biological methane formation.Science. 1997; 278 (9367957): 1457-1462
- Physiological ecology of methanogens.in: Ferry James G. Methanogenesis. Springer, 1993: 128-206
Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland. 2007. Changes in Atmospheric Constituents and in Radiative Forcing. Ar4 Climate Change 2007: The Physical Science Basis: Contribution of Working Group I To the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
- Correlations between the composition of the bovine microbiota and vitamin B12 abundance.mSystems. 2020; 5 (32127420): e00107-e00120
- The genome sequence of Methanosphaera stadtmanae reveals why this human intestinal archaeon is restricted to methanol and H2 for methane formation and ATP synthesis.J. Bacteriol. 2006; 188 (16385054): 642-658
- Theory involving propionate and Vitamin B12 in the low-milk fat syndrome.J. Dairy Sci. 1977; 60: 268-273
- Effect of amino acid or casein supply on whole-body, splanchnic, and mammary glucose kinetics in lactating dairy cows.J. Dairy Sci. 2011; 94 (22032379): 5558-5568
- Human genetics shape the gut microbiome.Cell. 2014; 159 (25417156): 789-799
- Redirection of metabolic hydrogen by inhibiting methanogenesis in the rumen simulation technique (RUSITEC).Front. Microbiol. 2017; 8 (28352256): 393
- The effects of feeding 3-nitrooxypropanol at two doses on milk production, rumen fermentation, plasma metabolites, nutrient digestibility, and methane emissions in lactating Holstein cows.Anim. Prod. Sci. 2017; 57: 282-289
- The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation.J. Dairy Sci. 2014; 97 (24630651): 3110-3119
- Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range.Sci. Rep. 2015; 5 (26449758)14567
- Methanogens: Methane producers of the rumen and mitigation strategies.Archaea. 2010; 2010 (21253540)945785
- An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production.Proc. Natl. Acad. Sci. USA. 2015; 112 (26229078): 10663-10668
- Hydrogen as an intermediate in the rumen fermentation.Arch. Microbiol. 1967; 59 (5628850): 158-164
IPCC. 2001. Climate Change 2001: The Scientific Basis. Climate Change 2001: The Scientific Basis: Contribution of Working Group I To the Third Assessment Report of the Intergovernmental Panel on Climate Change.
- Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics.Anim. Feed Sci. Technol. 2010; 160: 1-22
- Differences in ureolytic bacterial composition between the rumen digesta and rumen wall based on ureC gene classification.Front. Microbiol. 2017; 8 (28326079): 385
- Methane emissions from cattle.J. Anim. Sci. 1995; 73 (8567486): 2483-2492
- Status of the phylogenetic diversity census of ruminal microbiomes.FEMS Microbiol. Ecol. 2011; 76 (21223325): 49-63
- Two different bacterial community types are linked with the low-methane emission trait in sheep.PLoS One. 2014; 9 (25078564)e103171
- New aspects and strategies for methane mitigation from ruminants.Appl. Microbiol. Biotechnol. 2014; 98 (24247990): 31-44
- Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation.Sci. Total Environ. 2019; 654 (30841400): 1270-1283
- Precursors for liver gluconeogenesis in periparturient dairy cows.Animal. 2013; 7: 1640-1650
- Relative contributions of greenhouse gas emissions to global warming.Nature. 1990; 344: 529-531
- The complete genome sequence of Methanobrevibacter sp. AbM4.Stand. Genomic Sci. 2013; 8 (23991254): 215-227
- Synergistic effects of 3-nitrooxypropanol with fumarate in the regulation of propionate formation and methanogenesis in dairy cows in vitro.Appl. Environ. Microbiol. 2022; 88 (35080908)e0190821
- Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows.J. Dairy Sci. 2016; 99 (27085412): 5335-5344
- Formation of propionate and butyrate by the human colonic microbiota.Environ. Microbiol. 2017; 19 (27928878): 29-41
- Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities.Appl. Environ. Microbiol. 2007; 73 (17220268): 1576-1585
- FLASH: Fast length adjustment of short reads to improve genome assemblies.Bioinformatics. 2011; 27 (21903629): 2957-2963
- Effects of monensin, pyromellitic diimide, and 2-bromoethanesulfonic acid on rumen fermentation in vitro.J. Anim. Sci. 1985; 60 (2985530): 544-550
- Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep.J. Dairy Sci. 2014; 97 (24731636): 3790-3799
- Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle.Front. Microbiol. 2016; 7 (27486452)1122
- Redirecting rumen fermentation to reduce methanogenesis.Australian Journal of Experimental Agriculture. 2008; 48: 7-13
- Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows.J. Dairy Sci. 2020; 103 (31733848): 410-432
- Enteric methane emission, milk production, and composition of dairy cows fed 3-nitrooxypropanol.J. Dairy Sci. 2021; 104 (33131815): 357-366
- Control of rumen microbial fermentation for mitigating methane emissions from the rumen.Asian-Australas. J. Anim. Sci. 2008; 21: 144-154
- Description of Christensenella minuta gen. nov., sp. nov., isolated from human faeces, which forms a distinct branch in the order Clostridiales, and proposal of Christensenellaceae fam. nov.Int. J. Syst. Evol. Microbiol. 2012; 62 (21357455): 144-149
- Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.Gut Microbes. 2016; 7 (26963409): 189-200
- STAMP: Statistical analysis of taxonomic and functional profiles.Bioinformatics. 2014; 30 (25061070): 3123-3124
- Climate metrics and the carbon footprint of livestock products: Where's the beef?.Environ. Res. Lett. 2015; 10034005
- Differences in gut microbiota in patients with vs without inflammatory bowel diseases: A systematic review.Gastroenterology. 2020; 158 (31812509): 930-946.E1
- The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools.Nucleic Acids Res. 2013; 41 (23193283): D590-D596
- Phylogenetic distribution of three pathways for propionate production within the human gut microbiota.ISME J. 2014; 8 (24553467): 1323-1335
- Production and metabolic effects of site of starch digestion in dairy cattle.Anim. Feed Sci. Technol. 2006; 130: 78-94
- Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows.J. Dairy Sci. 2014; 97 (24704240): 3777-3789
- Effects of 3-nitrooxypropanol on methane production using the rumen simulation technique (Rusitec).Anim. Feed Sci. Technol. 2015; 209: 98-109
- Effects of 3-nitrooxypropanol and monensin on methane production using a forage-based diet in Rusitec fermenters.Anim. Feed Sci. Technol. 2016; 220: 67-72
- Rapid communication: Evaluation of methane inhibitor 3-nitrooxypropanol and monensin in a high-grain diet using the rumen simulation technique (Rusitec).J. Anim. Sci. 2017; 95 (28992012): 4072-4077
- Sustained reduction in methane production from long-term addition of 3-nitrooxypropanol to a beef cattle diet.J. Anim. Sci. 2015; 93 (26020199): 1780-1791
- Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome.Genome Res. 2014; 24 (24907284): 1517-1525
- Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR.Appl. Microbiol. Biotechnol. 2007; 75 (17235560): 165-174
- Vitamin B12-dependent propionate production by the ruminal bacterium Prevotella ruminicola 23.Appl. Environ. Microbiol. 1992; 58 (1637169): 2331-2333
- A collection of rumen bacteriome data from 334 mid-lactation dairy cows.Sci. Data. 2019; 6 (30667380)180301
- Inhibition of rumen methanogenesis and ruminant productivity: A meta-analysis.Front. Vet. Sci. 2018; 5 (29971241): 113
- 3-Nitrooxypropanol decreases methane emissions and increases hydrogen emissions of early lactation dairy cows, with associated changes in nutrient digestibility and energy metabolism.J. Dairy Sci. 2020; 103 (32600756): 8074-8093
- Thermodynamic driving force of hydrogen on rumen microbial metabolism: A theoretical investigation.PLoS One. 2016; 11e0161362
- Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol.J. Dairy Sci. 2019; 102 (30594370): 1780-1787
- Effects of sustained reduction of enteric methane emissions with dietary supplementation of 3-nitrooxypropanol on growth performance of growing and finishing beef cattle.J. Anim. Sci. 2016; 94 (27285700): 2024-2034
- Shifts of hydrogen metabolism from methanogenesis to propionate production in response to replacement of forage fiber with non-forage fiber sources in diets in vitro.Front. Microbiol. 2018; 9 (30524394)2764
- Effects of propylene glycol on in vitro ruminal fermentation, methanogenesis, and microbial community structure.J. Dairy Sci. 2021; 104 (33455765): 2924-2934
- Development of multiwell-plate methods using pure cultures of methanogens to identify new inhibitors for suppressing ruminant methane emissions.Appl. Environ. Microbiol. 2017; 83 (28526787): e00396-e00417
- The Scientific Basis for Estimating Air Emissions from Animal Feeding Operations.National Academy Press, 2002
- Pectin and inulin stimulated the mucus formation at a similar level: An omics-based comparative analysis.J. Food Sci. 2020; 85 (32468578): 1939-1947
- Ethanoligenens harbinense gen. nov., sp. nov., isolated from molasses wastewater.Int. J. Syst. Evol. Microbiol. 2006; 56 (16585689): 755-760
- 3-Nitrooxypropanol supplementation had little effect on fiber degradation and microbial colonization of forage particles when evaluated using the in situ ruminal incubation technique.J. Dairy Sci. 2020; 103 (32861497): 8986-8997
- Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies.Appl. Environ. Microbiol. 2009; 75 (19717632): 6524-6533
- Characterization of variation in rumen methanogenic communities under different dietary and host feed efficiency conditions, as determined by PCR-denaturing gradient gel electrophoresis analysis.Appl. Environ. Microbiol. 2010; 76 (20418436): 3776-3786
Article info
Publication history
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy