ABSTRACT
Key words
INTRODUCTION
- Myhre G.
- Shindell D.
- Bréon F.-M.
- Collins W.
- Fuglestvedt J.
- Huang J.
- Koch D.
- Lamarque J.-F.
- Lee D.
- Mendoza B.
- Nakajima T.
- Robock A.
- Stephens G.
- Takemura T.
- Zhang H.
- Gavrilova O.
- Leip A.
- Dong H.
- Macdonald J.D.
- Gomez Bravo C.A.
- Amon B.
- Barahona Rosales R.
- Agustin del Prado A.
- Aparecida de Lima M.
- Oyhantcabal W.
- van der Weerden T.J.
- Widiawati Y.
- Martin C.
- Promiès D.
- Ferlay A.
- Rochette Y.
- Martin B.
- Chilliard Y.
- Morgavi D.
- Doreau M.
- The World Bank
BACKGROUND ON ENTERIC METHANE EMISSION INDICATORS
- Negussie E.
- de Haas Y.
- Dehareng F.
- Dewhurst R.J.
- Dijkstra J.
- Gengler N.
- Morgavi D.P.
- Soyeurt H.
- van Gastelen S.
- Yan T.
- Biscarini F.
- Allen B.
- Hart K.
- Radley G.
- Tucker G.
- Keenleyside C.
- Oppermann R.
- Underwood E.
- Menadue H.
- Poux X.
- Beaufoy G.
- Herzon I.
- Povellato A.
- Vanni F.
- Prazan J.
- Hudson T.
- Yellachich N.
- Gavrilova O.
- Leip A.
- Dong H.
- Macdonald J.D.
- Gomez Bravo C.A.
- Amon B.
- Barahona Rosales R.
- Agustin del Prado A.
- Aparecida de Lima M.
- Oyhantcabal W.
- van der Weerden T.J.
- Widiawati Y.
A TIER 3 INDICATOR APPLIED IN THE FRENCH ECO-METHANE RESULT-BASED SCHEME
- Martin C.
- Promiès D.
- Ferlay A.
- Rochette Y.
- Martin B.
- Chilliard Y.
- Morgavi D.
- Doreau M.
This formula was coinvented by teams from the animal feed manufacturing company Valorex (P. Weill and G. Chesneau) and the French National Institute for Agricultural Research (INRA) (Y. Chilliard, M. Doreau and C. Martin), and received a patent under the title “Method for evaluating the quantity of methane produced by a dairy ruminant and method for decreasing and controlling such quantity” (WO2009156453A1) (
- Bleu-Blanc-Coeur
MATERIALS AND METHODS
Data
Variable | 1st quartile | Median | Mean | 3rd quartile |
---|---|---|---|---|
Utilized Agricultural Area (ha) | 50.0 | 80.0 | 87.4 | 110.0 |
Fodder area (ha) | 40.0 | 60.0 | 67.4 | 80.0 |
Corn silage area (ha) | 1.0 | 10.0 | 14.1 | 20.0 |
Pasture area (permanent and temporary) (ha) | 26.0 | 40.0 | 50.3 | 61.0 |
Productivity (L/cow) | 5,593.4 | 6,676.4 | 6,707.9 | 7,851.1 |
Number of dairy cows | 35 | 55 | 58 | 70 |
Agricultural Work Unit | 1.0 | 2.0 | 1.8 | 2.1 |
Purchase of cattle feed concentrates (€) | 14,326.0 | 24,996.5 | 32,853.2 | 43,645.0 |
Attribution of enteric methane emissions
The emission factor EF (kgCH4/cow/year) can be easily calculated for each farm of the FADN from the milk production (kg/year) of the herd (Milk production) and the number of dairy cows (Ncows). We then derive an emission indicator (TIER2) per liter of milk (gCH4/L), capturing variability according to milk productivity (L/cow/year) (3).
Due to the absence of data on dairy cows' diet, a Tier 3 method cannot be applied to evaluate individual emissions of FADN farms and capture both productivity and diet effects. In particular, data are too limited to estimate individual enteric methane emissions of French farms using (1). They are, however, sufficient to identify their Eco-Methane scenario and therefore the baseline emissions corresponding to their fodder system. Baseline emissions from the 11 scenarios are available per month and were obtained from BBC. We calculate the annual average to define the Eco-Methane baseline emissions indicator (Eco-Methane baseline) (Table 2).
Scenario | Corn in the fodder area | Production basin | Eco-Methane baseline (gCH4/L) |
---|---|---|---|
1 | More than 30% | Plains outside the western region | 15.75 |
2 | Plains of the western region | 15.92 | |
3 | Between 10 and 30% | Plains outside the western region | 15.83 |
4 | Plains of the western region | 16.43 | |
5 | Less than 10% | Plains outside the western region | 16.56 |
6 | Plains of the western region | 17.38 | |
7 | More than 10% | Mountains | 15.96 |
8 | Less than 10% | Mountains of the Massif Central | 17.13 |
9 | Mountains of the Northern Alps | 17.83 | |
10 | Mountains of Franche-Comté | 16.22 | |
11 | Other mountains | 17.20 |
Estimation of the extra-cost of milk production with more grass in the fodder system
- Bleu-Blanc-Coeur
It must be concave, nondecreasing and homogeneous of degree 1 in variable input prices, decreasing with (binding) fixed factors of production, and monotonic according to output levels.
To account for the correlations between the error terms of the different equations, we use a 3-stage least squares regression analysis. The system of equations (5) + (6) + (7) is estimated for all the farms of the sample and then for the 3 major production basins and groups of Eco-Methane scenarios defined in Table 2 to identify potential differences in extra costs according to the type of dairy system. The different steps to derive the specification of the system are described in the Appendix. Descriptive statistics of the model variables of the sample and subsamples are presented in Table 3.
Variable | France n = 2,205 | Western plains n = 645 | Plains outside the western region n = 965 | Mountains n = 585 | Plains, > 30% of corn in the fodder area n = 767 | Plains, 10-30% of corn in the fodder area n = 574 | Plains, <10% of corn in the fodder area n = 279 |
---|---|---|---|---|---|---|---|
Scenarios | 1–11 | 2, 4, 6 | 1, 3, 5 | 7–11 | 1–2 | 3–4 | 5–6 |
Variable Costs (€/year) | 128,073.5 | 139,405.3 | 136,399.4 | 96,533.0 | 170,654.1 | 124,656.0 | 90,248.5 |
(105,612.7) | (107,167.1) | (112,800.6) | (80,772.0) | (124,937.8) | (71,877.3) | (57,036.7) | |
Milk production (L/year) | 398,594.1 | 446,128.0 | 402,355.2 | 306,703.0 | 526,707.0 | 396,281.9 | 156,204.9 |
(297,513.2) | (328,781.5) | (296,923.0) | (226,416.1) | (333,580.8) | (213,270.9) | (266,216.2) | |
Other productions (€/base 100/year) | 498.6 | 581.3 | 554.6 | 274.4 | 750.2 | 488.6 | 317.0 |
(671.5) | (642.3) | (770.2) | (413.0) | (871.1) | (432.8) | (349.0) | |
Fuel price (€/L) | 0.60 | 0.59 | 0.59 | 0.61 | 0.59 | 0.59 | 0.60 |
(0.10) | (0.10) | (0.11) | (0.10) | (0.10) | (0.10) | (0.10) | |
Feed price (base 100) | 96.6 | 96.5 | 96.6 | 96.8 | 96.6 | 96.5 | 96.6 |
(2.4) | (2.4) | (2.4) | (2.3) | (2.4) | (2.4) | (2.4) | |
Grassland (ha) | 51.1 | 42.1 | 52.7 | 65.5 | 34.2 | 50.6 | 66.1 |
(41.0) | (31.5) | (38.6) | (47.8) | (25.8) | (32.5) | (36.1) | |
Capital (1000€) | 171.0 | 160.5 | 179.4 | 179.5 | 189.1 | 144.8 | 163.4 |
(155.9) | (146.8) | (163.7) | (160.8) | (161.8) | (141.1) | (153.5) | |
Labor (AWU) | 1.8 | 1.9 | 1.9 | 1.7 | 2.0 | 1.7 | 1.7 |
(1.0) | (1.0) | (1.0) | (1.0) | (1.1) | (0.8) | (0.9) | |
UAA (ha) | 87.4 | 84.3 | 92.6 | 86.3 | 93.3 | 85.5 | 79.3 |
(58.1) | (55.3) | (60.0) | (57.8) | (60.6) | (48.2) | (42.1) |
RESULTS AND DISCUSSION
Allocation of Eco-Methane scenarios and distinction of 3 milk production basins

Enteric emissions: relation to productivity and fodder system
Scenarios | Plains outside the western region | Western plains | Mountains | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1, 3, 5 | 1 | 3 | 5 | 2, 4, 6 | 2 | 4 | 6 | 7–11 | 7 | 8 to 11 | |
% corn in fodder area | >30 | 30–10 | <10 | >30 | 30–10 | <10 | ≥10 | <10 | |||
Sample share (%) | 31.4 | 10.0 | 9.9 | 11.5 | 44.3 | 23.7 | 16.8 | 3.8 | 24.3 | 6.5 | 17.8 |
Productivity (1,000L/cow) | 6.72 | 7.65 | 6.94 | 5.72 | 6.98 | 7.33 | 6.79 | 5.59 | 6.20 | 6.91 | 5.94 |
TIER2 (gCH4/L) | 18.55d | 17.46l | 18.22fhj | 19.78a | 18.23ehi | 17.80k | 18.38defg | 20.22a | 19.07c | 18.19gij | 19.40b |
Eco-Methane baseline (gCH4/L) | 16.07q | 15.75u | 15.83t | 16.56n | 16.24p | 15.92s | 16.43° | 17.38l | 16.55n | 15.96r | 16.76m |

- Negussie E.
- de Haas Y.
- Dehareng F.
- Dewhurst R.J.
- Dijkstra J.
- Gengler N.
- Morgavi D.P.
- Soyeurt H.
- van Gastelen S.
- Yan T.
- Biscarini F.
Impact of increasing the grassland area on the marginal cost of milk production
The results presented in the following paragraphs are calculated from the regression results detailed in the Appendix (Tables A4-A10).
France | Plains of the western region | Plains outside the western region | Mountains | Plains with more than 30% of corn silage in the fodder area | Plains with 10 to 30% of corn silage in the fodder area | Plains with less than 10% of corn silage in the fodder area | |
---|---|---|---|---|---|---|---|
Marginal cost (€/1000L) | 241.5 | 230.5 | 251.0 | 261.1 | 225.7 | 225.1 | 262.0 |
Extra-cost (€/1000L/ha) | −0.02 | −0.48 | 0.58+ | −0.41 | −1.38+ | 0.28 | −1.82*** |
Variable cost regression R2 | 0.91 | 0.91 | 0.91 | 0.91 | 0.90 | 0.91 | 0.89 |
CONCLUSIONS
ACKNOWLEDGMENTS
APPENDIX
Steps to impose homogeneity of degree 1 in input prices:
Parameter constraints to impose to our system:
Homogeneous function to estimate:
Input demand functions: applying Shephard' lemma:

Administrative Region | Department | Scenarios | Production share (volume) | Attributed scenarios |
---|---|---|---|---|
Ile de France | 1, 3 or 5 | 1, 3 or 5 | ||
Champagne Ardennes | 1, 3 or 5 | 1, 3 or 5 | ||
Picardie | 1, 3 or 5 | 1, 3 or 5 | ||
Haute Normandie | 1, 3 or 5 | 1, 3 or 5 | ||
Centre | 1, 3 or 5 | 1, 3 or 5 | ||
Basse Normandie | 2, 4, 6 | 2, 4 or 6 | ||
Bourgogne | 1, 3 or 5 | 1, 3 or 5 | ||
Nord Pas De Calais | 1, 3 or 5 | 1, 3 or 5 | ||
Lorraine | 54 | 1, 3 or 5 | 59% | 1, 3 or 5 |
55 | 1, 3 or 5 | |||
57 | 1, 3 or 5 | |||
88 | 7 or 11 | 41% | ||
Alsace | 1, 3 or 5 | 1, 3 or 5 | ||
Franche-Comté | 25 | 7 or 10 | 76% | 7 or 10 |
39 | 7 or 10 | |||
70 | 1, 3 or 5 | 24% | ||
Pays de la Loire | 2, 4 or 6 | 2, 4 or 6 | ||
Bretagne | 1, 3 or 5 | 1, 3 or 5 | ||
Poitou-Charentes | 1, 3 or 5 | 1, 3 or 5 | ||
Aquitaine | 1, 3 or 5 | 1, 3 or 5 | ||
Midi-Pyrénées | 46 | 7 or 8 | 60% | 7 or 8 |
12 | 7 or 8 | |||
9 | 1, 3 or 5 | 40% | ||
31 | 1, 3 or 5 | |||
32 | 1, 3 or 5 | |||
65 | 1, 3 or 5 | |||
81 | 1, 3 or 5 | |||
82 | 1, 3 or 5 | |||
Limousin | 1, 3 or 5 | 1, 3 or 5 | ||
Rhône Alpes | 1 | 1, 3 or 5 | 75% | 1, 3 or 5 |
7 | 1, 3 or 5 | |||
26 | 1, 3 or 5 | |||
38 | 1, 3 or 5 | |||
42 | 1, 3 or 5 | |||
69 | 1, 3 or 5 | |||
73 | 7 or 8 | 25% | ||
74 | ||||
Auvergne | 7 or 8 | 7 or 8 | ||
Languedoc-Roussillon | 11 | 1, 3 or 5 | 10% | 7 or 8 |
30 | 1, 3 or 5 | |||
34 | 1, 3 or 5 | |||
66 | 1, 3 or 5 | |||
48 | 7 or 8 | 90% | ||
Provence Alpes Côte d'Azur | 5 | 7 or 11 | 87% | 7 or 11 |
4 | 1, 3 or 5 | 13% | ||
6 | 1, 3 or 5 | |||
13 | 1, 3 or 5 | |||
83 | 1, 3 or 5 | |||
84 | 1, 3 or 5 |
Q1 | Q2 | Mean | Q3 | |
---|---|---|---|---|
% variation of milk production volume relative to the farm mean over 2016–2018 | 1.64 | 3.49 | 4.85 | 6.63 |
Share of milk production in the total gross product | 69.19 | 77.74 | 76.57 | 85.15 |
Share of crop production in the total gross product | 0.20 | 3.99 | 6.34 | 10.98 |
Share of other livestock products in the total gross product | 0.00 | 0.00 | 0.87 | 0.00 |
Share of fuel expenses in intermediate consumption | 3.60 | 4.60 | 4.88 | 6.00 |
Share of cattle feed expenses in intermediate consumption | 19.10 | 25.20 | 24.63 | 31.00 |
Share of fertilizer expenses in intermediate consumption | 3.29 | 5.29 | 5.78 | 7.76 |
France | Plains of the western region | Plains outside the western region | Mountains | Plains with more than 30% of corn silage in the fodder area | Plains with 10 to 30% of corn silage in the fodder area | Plains with less than 10% of corn silage in the fodder area | |
---|---|---|---|---|---|---|---|
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
0.2 | 2.3 | 4.2 | 26.3 | 21.5 | 51.0 | 24.4 | |
86.0 | 19.7 | 86.5 | 68.7 | 45.0 | 59.9 | 64.5 | |
38.3 | 41.4 | 29.2 | 16.9 | 39.2 | 21.3 | 71.8 | |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | |
0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Coefficient | Estimate | Variable cost equation | Fuel cost share function | Feed cost share function |
---|---|---|---|---|
3.398*** (0.658) | Constant | |||
1.156*** (0.202) | Ln (milk production) | |||
0.457*** (0.029) | Ln (feed price/fuel price) | 1- constant | constant | |
0.007 (0.108) | Ln (grassland) | |||
0.086 (0.065) | Ln (capital) | |||
0.739*** (0.214) | Ln (labor) | |||
−0.054 (0.042) | 0.5 *Ln (milk production)2 | |||
−0.002 (0.020) | Ln (milk production) *Ln (grassland) | |||
−0.026+ (0.015) | Ln (milk production) *Ln (capital) | |||
−0.151*** (0.040) | Ln (milk production) *Ln (labor) | |||
0.024*** (0.003) | Ln (milk production) *Ln (feed price/fuel price) | -Ln (milk production) | Ln (milk production) | |
0.002 (0.002) | 0.5 *Ln (feed price/fuel price)2 | -Ln (feed price/fuel price) | Ln (feed price/fuel price) | |
0.004* (0.002) | Ln (feed price/fuel price) *Ln (grassland) | -Ln (grassland) | Ln (grassland) | |
−0.003** (0.001) | Ln (feed price/fuel price) *Ln (capital) | -Ln (capital) | Ln (capital) | |
−0.009** (0.003) | Ln (feed price/fuel price) *Ln (labor) | -Ln (labor) | Ln (labor) | |
−0.014 (0.013) | 0.5 *Ln (grassland)2 | |||
0.001 (0.009) | Ln (grassland) *Ln (capital) | |||
−0.014 (0.023) | Ln (grassland) *Ln (labor) | |||
0.014* (0.007) | 0.5 *Ln (capital)2 | |||
0.035* (0.016) | Ln (capital) *Ln (labor) | |||
0.091 (0.061) | 0.5 *Ln (labor)2 | |||
0.000*** (0.000) | other productions | |||
0.002*** (0.000) | utilized agricultural area | |||
−0.199 (0.326) | Champagne-Ardennes | |||
−0.146 (0.325) | Picardie | |||
−0.121 (0.325) | Haute Normandie | |||
−0.086 (0.326) | Centre | |||
−0.119 (0.325) | Basse Normandie | |||
−0.107 (0.329) | Bourgogne | |||
−0.107 (0.325) | Nord-Pas-De-Calais | |||
−0.119 (0.325) | Lorraine | |||
−0.094 (0.327) | Alsace | |||
−0.123 (0.325) | Franche-Comté | |||
−0.156 (0.325) | Pays de la Loire | |||
−0.207 (0.324) | Bretagne | |||
−0.111 (0.326) | Poitou-Charentes | |||
−0.080 (0.326) | Aquitaine | |||
−0.257 (0.325) | Midi-Pyrénées | |||
−0.200 (0.327) | Limousin | |||
−0.104 (0.325) | Rhône-Alpes | |||
−0.247 (0.325) | Auvergne | |||
−0.233 (0.327) | Languedoc-Roussillon | |||
−0.281 (0.332) | Provence-Alpes-Côte d'Azur | |||
Baseline: Ile-de-France | ||||
0.024* (0.011) | Year 2016 | |||
0.003 (0.010) | Year 2017 | |||
Baseline: 2018 | ||||
R2 | 0.912 | −306.535 | −14.425 |
Coefficient | Estimate | Variable cost equation | Fuel cost share function | Feed cost share function |
---|---|---|---|---|
5.422*** (1.075) | Constant | |||
0.413 (0.419) | Ln (milk production) | |||
0.423*** (0.048) | Ln (feed price/fuel price) | 1- constant | constant | |
0.423* (0.210) | Ln (grassland) | |||
−0.078 (0.146) | Ln (capital) | |||
0.744+ (0.400) | Ln (labor) | |||
0.015 (0.100) | 0.5 *Ln (milk production)2 | |||
−0.046 (0.043) | Ln (milk production) *Ln (grassland) | |||
0.044 (0.038) | Ln (milk production) *Ln (capital) | |||
−0.100 (0.085) | Ln (milk production) *Ln (labor) | |||
0.041*** (0.005) | Ln (milk production) *Ln (feed price/fuel price) | - Ln (milk production) | Ln (milk production) | |
0.001 (0.004) | 0.5 *Ln (feed price/fuel price)2 | -Ln (feed price/fuel price) | Ln (feed price/fuel price) | |
−0.018*** (0.003) | Ln (feed price/fuel price) *Ln (grassland) | -Ln (grassland) | Ln (grassland) | |
−0.005* (0.002) | Ln (feed price/fuel price) *Ln (capital) | -Ln (capital) | Ln (capital) | |
0.003 (0.005) | Ln (feed price/fuel price) *Ln (labor) | -Ln (labor) | Ln (labor) | |
−0.047 (0.042) | 0.5 *Ln (grassland)2 | |||
0.004 (0.021) | Ln(grassland)*Ln(capital) | |||
0.030 (0.051) | Ln(grassland)*Ln(labor) | |||
−0.031+ (0.018) | 0.5*Ln(capital)2 | |||
−0.063* (0.032) | Ln(capital)*Ln(labor) | |||
0.143 (0.106) | 0.5*Ln(labor)2 | |||
0.000*** (0.000) | other productions | |||
0.002*** (0.000) | utilized agricultural area | |||
−0.043* (0.019) | Pays de la Loire | |||
−0.099*** (0.019) | Bretagne | |||
Baseline: Basse Normandie | ||||
0.003 (0.019) | Year 2016 | |||
−0.018 (0.017) | Year 2017 | |||
Baseline: 2018 | ||||
R2 | 0.915 | −362.617 | −18.850 |
Coefficient | Estimate | Variable cost equation | Fuel cost share function | Feed cost share function |
---|---|---|---|---|
5.254*** (0.929) | Constant | |||
0.668* (0.293) | Ln (milk production) | |||
0.404*** (0.043) | Ln (feed price/fuel price) | 1- constant | constant | |
−0.310* (0.156) | Ln (grassland) | |||
0.101 (0.087) | Ln (capital) | |||
1.558*** (0.321) | Ln (labor) | |||
0.012 (0.057) | 0.5*Ln (milk production)2 | |||
0.047+ (0.027) | Ln (milk production) *Ln (grassland) | |||
−0.038* (0.019) | Ln (milk production) *Ln (capital) | |||
−0.297*** (0.056) | Ln (milk production) *Ln (labor) | |||
0.033*** (0.004) | Ln (milk production) *Ln (feed price/fuel price) | - Ln (milk production) | Ln (milk production) | |
0.001 (0.004) | 0.5 *Ln (feed price/fuel price)2 | -Ln (feed price/fuel price) | Ln (feed price/fuel price) | |
0.009*** (0.002) | Ln (feed price/fuel price) *Ln (grassland) | -Ln (grassland) | Ln (grassland) | |
−0.001 (0.002) | Ln (feed price/fuel price) *Ln (capital) | -Ln (capital) | Ln (capital) | |
−0.032*** (0.005) | Ln (feed price/fuel price) *Ln (labor) | -Ln (labor) | Ln (labor) | |
−0.006 (0.016) | 0.5 *Ln (grassland)2 | |||
−0.001 (0.012) | Ln (grassland) *Ln (capital) | |||
−0.040 (0.031) | Ln (grassland) *Ln (labor) | |||
0.024* (0.009) | 0.5 *Ln (capital)2 | |||
0.087*** (0.022) | Ln (capital) *Ln (labor) | |||
0.022 (0.089) | 0.5 *Ln (labor)2 | |||
0.000*** (0.000) | other productions | |||
0.001*** (0.000) | utilized agricultural area | |||
−0.175 (0.283) | Champagne-Ardennes | |||
−0.100 (0.282) | Picardie | |||
−0.078 (0.282) | Haute Normandie | |||
−0.010 (0.283) | Centre | |||
−0.067 (0.285) | Bourgogne | |||
−0.079 (0.282) | Nord-Pas-De-Calais | |||
. | −0.078 (0.282) | Lorraine | ||
−0.059 (0.283) | Alsace | |||
−0.052 (0.283) | Poitou-Charentes | |||
−0.063 (0.283) | Aquitaine | |||
−0.163 (0.285) | Limousin | |||
−0.093 (0.282) | Rhône-Alpes | |||
Baseline: Ile-de-France | ||||
0.057** (0.017) | Year 2016 | |||
0.017 (0.016) | Year 2017 | |||
Baseline: 2018 | ||||
R2 | 0.911 | −276.665 | −12.377 |
Coefficient | Estimate | Variable cost equation | Fuel cost share function | Feed cost share function |
---|---|---|---|---|
1.397 (1.152) | Constant | |||
1.285** (0.427) | Ln (milk production) | |||
0.408*** (0.058) | Ln (feed price/fuel price) | 1- constant | constant | |
514* (0.257) | Ln (grassland) | |||
0.270* (0.136) | Ln (capital) | |||
−0.193 (0.437) | Ln (labor) | |||
0.001 (0.094) | 0.5 *Ln (milk production)2 | |||
−0.060 (0.047) | Ln (milk production) *Ln (grassland) | |||
−0.055+ (0.032) | Ln (milk production) *Ln (capital) | |||
−0.093 (0.083) | Ln (milk production) *Ln (labor) | |||
0.025*** (0.006) | Ln (milk production) *Ln (feed price/fuel price) | - Ln (milk production) | Ln (milk production) | |
0.006 (0.005) | 0.5 *Ln (feed price/fuel price)2 | -Ln (feed price/fuel price) | Ln (feed price/fuel price) | |
0.019*** (0.004) | Ln (feed price/fuel price) *Ln (grassland) | -Ln (grassland) | Ln (grassland) | |
−0.013*** (0.003) | Ln (feed price/fuel price) *Ln (capital) | -Ln (capital) | Ln (capital) | |
−0.016* (0.006) | Ln (feed price/fuel price) *Ln (labor) | -Ln (labor) | Ln (labor) | |
−0.062 (0.049) | 0.5 *Ln (grassland)2 | |||
−0.014 (0.020) | Ln (grassland) *Ln (capital) | |||
0.081 (0.055) | Ln (grassland) *Ln (labor) | |||
0.025* (0.012) | 0.5* Ln (capital)2 | |||
0.078* (0.039) | Ln (capital)* Ln (labor) | |||
−0.074 (0.145) | 0.5 *Ln (labor)2 | |||
0.000*** (0.000) | other productions | |||
0.002*** (0.000) | utilized agricultural area | |||
0.109*** (0.030) | Franche-Comté | |||
0.006 (0.025) | Auvergne | |||
0.032 (0.050) | Languedoc-Roussillon | |||
0.017 (0.079) | Provence-Alpes-Côte d'Azur | |||
Baseline: Midi-Pyrénées | ||||
0.032 (0.023) | Year 2016 | |||
0.030 (0.020) | Year 2017 | |||
Baseline: 2018 | ||||
R2 | 0.910 | −289.950 | −12.903 |
Coefficient | Estimate | Variable cost equation | Fuel cost share function | Feed cost share function |
---|---|---|---|---|
6.811*** (1.111) | Constant | |||
−0.265 (0.449) | Ln (milk production) | |||
0.388*** (0.046) | Ln (feed price/fuel price) | 1- constant | constant | |
0.283 (0.233) | Ln (grassland) | |||
0.320* (0.140) | Ln (capital) | |||
1.445** (0.437) | Ln (labor) | |||
0.262* (0.105) | 0.5 *Ln (milk production)2 | |||
−0.092+ (0.049) | Ln (milk production) *Ln (grassland) | |||
−0.078* (0.037) | Ln (milk production) *Ln (capital) | |||
−0.235* (0.096) | Ln (milk production) *Ln (labor) | |||
0.046*** (0.006) | Ln (milk production) *Ln (feed price/fuel price) | - Ln (milk production) | Ln (milk production) | |
0.002 (0.004) | 0.5*Ln(feed price/fuel price)2 | -Ln (feed price/fuel price) | Ln (feed price/fuel price) | |
−0.013*** (0.003) | Ln (feed price/fuel price) *Ln (grassland) | -Ln (grassland) | Ln (grassland) | |
−0.007** (0.002) | Ln (feed price/fuel price) *Ln (capital) | -Ln (capital) | Ln (capital) | |
−0.008 (0.005) | Ln (feed price/fuel price) *Ln (labor) | -Ln (labor) | Ln (labor) | |
−0.001 (0.019) | 0.5* Ln (grassland)2 | |||
0.063** (0.019) | Ln (grassland) *Ln (capital) | |||
−0.061 (0.040) | Ln(grassland)*Ln(labor) | |||
−0.005 (0.016) | 0.5*Ln(capital)2 | |||
0.018 (0.031) | Ln(capital)*Ln(labor) | |||
0.237* (0.102) | 0.5*Ln(labor)2 | |||
0.000*** (0.000) | other productions | |||
0.002*** (0.000) | utilized agricultural area | |||
−0.194 (0.300) | Champagne-Ardenne | |||
−0.241 (0.285) | Picardie | |||
−0.236 (0.285) | Haute Normandie | |||
−0.178 (0.286) | Centre | |||
−0.214 (0.284) | Basse Normandie | |||
−0.163 (0.293) | Bourgogne | |||
−0.185 (0.284) | Nord-Pas-De-Calais | |||
−0.199 (0.287) | Lorraine | |||
−0.217 (0.289) | Alsace | |||
−0.228 (0.284) | Pays de la Loire | |||
−0.273 (0.284) | Bretagne | |||
−0.240 (0.287) | Poitou-Charentes | |||
−0.178 (0.286) | Aquitaine | |||
−0.236 (0.308) | Limousin | |||
−0.120 (0.290) | Rhône-Alpes | |||
Baseline: Ile-de-France | ||||
0.034+ (0.017) | Year 2016 | |||
0.004 (0.016) | Year 2017 | |||
Baseline: 2018 | ||||
R2 | 0.902 | −320.701 | −17.652 |
Coefficient | Estimate | Variable cost equation | Fuel cost share function | Feed cost share function |
---|---|---|---|---|
6.926*** (1.244) | Constant | |||
−0.008 (0.460) | Ln (milk production) | |||
0.426*** (0.051) | Ln (feed price/fuel price) | 1- constant | constant | |
−0.071 (0.289) | Ln (grassland) | |||
0.100 (0.147) | Ln (capital) | |||
0.992* (0.445) | Ln (labor) | |||
0.083 (0.105) | 0.5 *Ln (milk production)2 | |||
0.031 (0.063) | Ln (milk production) *Ln (grassland) | |||
0.003 (0.035) | Ln (milk production) *Ln (capital) | |||
−0.190* (0.088) | Ln (milk production) *Ln (labor) | |||
0.035*** (0.006) | Ln (milk production) *Ln (feed price/fuel price) | - Ln (milk production) | Ln (milk production) | |
−0.001 (0.004) | 0.5 *Ln (feed price/fuel price)2 | -Ln (feed price/fuel price) | Ln (feed price/fuel price) | |
−0.004 (0.004) | Ln (feed price/fuel price) *Ln (grassland) | -Ln (grassland) | Ln (grassland) | |
−0.003 (0.002) | Ln (feed price/fuel price) *Ln (capital) | -Ln (capital) | Ln (capital) | |
0.009 (0.006) | Ln (feed price/fuel price) *Ln (labor) | -Ln (labor) | Ln (labor) | |
0.009 (0.060) | 0.5 *Ln (grassland)2 | |||
−0.023 (0.022) | Ln (grassland) *Ln (capital) | |||
−0.008 (0.063) | Ln (grassland) *Ln (labor) | |||
−0.002 (0.017) | 0.5 *Ln (capital)2 | |||
0.008 (0.035) | Ln (capital) *Ln (labor) | |||
0.076 (0.119) | 0.5 *Ln (labor)2 | |||
0.000*** (0.000) | other productions | |||
0.001* (0.000) | utilized agricultural area | |||
−0.021 (0.053) | Champagne-Ardenne | |||
0.024 (0.071) | Picardie | |||
−0.039 (0.047) | Haute Normandie | |||
0.130 (0.119) | Centre | |||
−0.055+ (0.029) | Basse Normandie | |||
−0.036 (0.066) | Bourgogne | |||
−0.011 (0.045) | Nord-Pas-De-Calais | |||
−0.020 (0.039) | Lorraine | |||
0.004 (0.059) | Alsace | |||
−0.063* (0.029) | Pays de la Loire | |||
−0.163*** (0.029) | Bretagne | |||
0.029 (0.053) | Poitou-Charentes | |||
−0.038 (0.053) | Aquitaine | |||
−0.037 (0.062) | Limousin | |||
Baseline: Ile-de-France | ||||
0.006 (0.019) | Year 2016 | |||
−0.027 (0.018) | Year 2017 | |||
Baseline: 2018 | ||||
R2 | 0.908 | −341.414 | −18.898 |
Coefficient | Estimate | Variable cost equation | Fuel cost share function | Feed cost share function |
---|---|---|---|---|
−5.524* (2.228) | Constant | |||
2.652*** (0.786) | Ln (milk production) | |||
0.441*** (0.096) | Ln (feed price/fuel price) | 1- constant | constant | |
2.645*** (0.552) | Ln (grassland) | |||
0.086 (0.210) | Ln (capital) | |||
−1.532* (0.731) | Ln (labor) | |||
−0.190 (0.172) | 0.5*Ln (milk production)2 | |||
−0.269*** (0.080) | Ln (milk production) *Ln (grassland) | |||
−0.008 (0.054) | Ln (milk production) *Ln (capital) | |||
0.163 (0.157) | Ln (milk production) *Ln (labor) | |||
0.039*** (0.010) | Ln (milk production) *Ln (feed price/fuel price) | - Ln (milk production) | Ln (milk production) | |
−0.001 (0.009) | 0.5 *Ln (feed price/fuel price)2 | -Ln (feed price/fuel price) | Ln (feed price/fuel price) | |
−0.002 (0.008) | Ln (feed price/fuel price) *Ln (grassland) | -Ln (grassland) | Ln (grassland) | |
−0.002 (0.003) | Ln (feed price/fuel price) *Ln (capital) | -Ln (capital) | Ln (capital) | |
−0.039*** (0.011) | Ln (feed price/fuel price) *Ln (labor) | -Ln (labor) | Ln (labor) | |
−0.260* (0.118) | 0.5 *Ln (grassland)2 | |||
−0.055 (0.047) | Ln (grassland) *Ln (capital) | |||
0.280** (0.105) | Ln (grassland) *Ln (labor) | |||
0.037+ (0.019) | 0.5 *Ln (capital)2 | |||
0.004 (0.057) | Ln (capital) *Ln (labor) | |||
−0.492*** (0.182) | 0.5 *Ln (labor)2 | |||
0.000*** (0.000) | other productions | |||
0.002+ (0.001) | utilized agricultural area | |||
−0.184** (0.060) | Champagne-Ardennes | |||
−0.131+ (0.076) | Picardie | |||
−0.084 (0.086) | Haute Normandie | |||
−0.108 (0.156) | Centre | |||
0.028 (0.052) | Basse Normandie | |||
−0.249** (0.086) | Nord-Pas-De-Calais | |||
−0.088 (0.054) | Lorraine | |||
0.368+ (0.208) | Alsace | |||
−0.164*** (0.047) | Pays de la Loire | |||
−0.060 (0.069) | Bretagne | |||
−0.012 (0.191) | Aquitaine | |||
−0.436** (0.158) | Limousin | |||
Baseline: Ile-de-France | ||||
0.006 (0.034) | Year 2016 | |||
0.004 (0.030) | Year 2017 | |||
Baseline: 2018 | ||||
R2 | 0.894 | −282.326 | −9.027 |
REFERENCES
Agreste. 2019. Enquête annuelle laitière 2018. French 2018 annual dairy survey (in French). Agreste Chiffres et Données 13.
- Biodiversity protection through results based remuneration of ecological achievement. Report Prepared for the European Commission, DG Environment, Contract No ENV.B.2/ETU/2013/0046.Institute for European Environmental Policy, London2014
- Diseconomies of size with fixed managerial ability.Am. J. Agric. Econ. 2003; 85: 134-142
- Agric.-environmental policies in the EU and United States: A comparison.Ecol. Econ. 2008; 65: 753-764
- Démarche Environnementale : La Démarche Éco-Méthane de Bleu-Blanc-Cœur. Environmental Engagement: The Eco-Methane Programme of Bleu-Blanc-Coeur (in French).https://bleu-blanc-coeur.org/a-propos/demarche-environnementale/Date: 2022Date accessed: June 18, 2021
- Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review.Can. J. Anim. Sci. 2004; 84: 319-335
- Effect of different feeding strategies in intensive dairy farming systems on milk fatty acid profiles, and implications on feeding costs in Italy.J. Dairy Sci. 2013; 96 (24011944): 6840-6855
- Improved calculation of warming-equivalent emissions for short-lived climate pollutants.npj Climate and Atmospheric Science. 2019; 29: 1-7
- Tiered life cycle sustainability assessment applied to a grazing dairy farm.J. Clean. Prod. 2018; 172: 1169-1179
- Milk fatty acids in dairy cows fed whole crude linseed, extruded linseed, or linseed oil, and their relationship with methane output.J. Dairy Sci. 2009; 92 (19762838): 5199-5211
- Inventaire des émissions de polluants atmosphériques et de gaz à effet de serre en France - Format Secten. National inventory of GHG and air pollutant emissions in France (in French).Citepa, Paris2020
- Organisation et méthodes des inventaires nationaux des émissions atmosphériques en France OMINEA - 17 ème édition. Inventory methodology report of GHG and air pollutant emissions in France - 17th edition (in French).Citepa, Paris2020
- Observatoire de l'alimentation des vaches laitières: description des 8 principaux systèmes d'élevage. Edition 2015–2018. Dairy cows' feed observatory: description of the 8 main farming systems. 2015–2018 edition (in French).CNIEL, Paris2015
- Forage system is the key driver of mountain milk specificity.J. Dairy Sci. 2019; 102 (31495613): 10483-10499
- Modelling the interactions between C and N farm balances and GHG emissions from confinement dairy farms in northern Spain.Sci. Total Environ. 2013; 465 (23601287): 156-165
- Lipid induced depression of methane production and digestibility in the artificial rumen system (RUSITEC).Can. J. Anim. Sci. 1997; 77: 269-278
- French attitudes on climate change, carbon taxation and other climate policies.Ecol. Econ. 2020; 169106496
- Policies for the ecological transition of agriculture: the livestock issue.Rev. Agric. Food Environ. Stud. 2021; 101: 529-538
- On the nature and magnitude of cost economies in hog production.Agric. Econ. 2016; 47: 465-476
- Annual European Union greenhouse gas inventory 1990 – 2018 and inventory report 2020. Submission to the UNFCCC Secretariat.EEA, Copenhagen2020
- Prediction of methane production from dairy and beef cattle.J. Dairy Sci. 2007; 90 (17582129): 3456-3466
- A new Tier 3 method to calculate methane emission inventory for ruminants.J. Environ. Manage. 2019; 231 (30602259): 982-988
- Effect of extruded linseed on productive and reproductive performance of lactating dairy cows.Livest. Sci. 2008; 113: 144-154
- Toward Optimal Meat Pricing: Is It Time to Tax Meat Consumption?.Rev. Environ. Econ. Policy. 2022; 16: 219-240
- Emissions from Livestock and Manure Management.in: 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. IPCC, Geneva2019: 1-209
- Carbon footprint of milk production from dairy cows in Australia.Int. Dairy J. 2014; 37: 31-38
- Can enteric methane emissions from ruminants be lowered without lowering their production?.Anim. Feed Sci. Technol. 2011; 166–167: 308-320
- Parameters affecting the environmental impact of a range of dairy farming systems in Denmark, Germany and Italy.J. Clean. Prod. 2013; 54: 133-141
- Benchmarking of greenhouse gas emissions of bovine milk production systems for 38 countries.Anim. Feed Sci. Technol. 2011; 166–167: 46-58
- Factors associated with profitability in pasture-based systems of milk production.J. Dairy Sci. 2018; 101 (29525299): 5474-5485
- Global assessment of the carbon leakage implications of carbon taxes on agricultural emissions.OECD FOOD, AGRICULTURE AND FISHERIES PAPER, 2021
- Increasing grazing in dairy cow milk production systems in Europe.Sustainability (Basel). 2020; 12: 1-15
- Improving farm profitability also reduces the carbon footprint of milk production in intensive dairy production systems.J. Clean. Prod. 2019; 229: 1018-1028
- Methane and nitrous oxide emissions from Canadian animal agriculture: A review.Can. J. Anim. Sci. 2006; 86: 135-158
- Mitigating methane emissions from livestock: A global analysis of sectoral policies.Clim. Change. 2012; 112: 387-414
- What will be the conditions of market access for dairy farmers after the end of dairy quotas?.Écon. Rurale (Paris). 2018; 2 (in French): 55-71
- Greenhouse Gas Emissions and Technical Efficiency in Alberta Dairy Production : What Are the Trade-Offs?.J. Agric. Appl. Econ. 2020; 52: 177-193
- Comparison of GHG-Emission indicators for dairy farms with respect to induced abatement costs, accuracy, and feasibility.Appl. Econ. Perspect. Policy. 2013; 35: 451-475
- Is low-input dairy farming more climate friendly? A meta-analysis of the carbon footprints of different production systems.J. Clean. Prod. 2019; 211: 161-170
- Comment réduire la production de méthane chez les ruminants? How can the production of methane by ruminants be reduced?.Fourrages (Versailles). 2006; 187 (in French): 283-300
- Methane mitigation in ruminants: from microbe to the farm scale.Animal. 2010; 4 (22443940): 351-365
- Methane output and rumen microbiota in dairy cows in response to long-term supplementation with linseed or rapeseed of grass silage or pasture based diets.in: Proceedings of the New Zealand Society of Animal Production. volume 71. New Zealand Society of Animal Production, Invercargill2011: 243-247
- Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil.J. Anim. Sci. 2008; 86 (18469051): 2642-2650
- Cost, Revenue and Profit Functions.in: Fuss M. McFadden D. Production Economics: A Dual Approach to Theory and Applications, Volume I: The Theory of Production. North Holland, Amsterdam1978: 2-109
- The Cost Structure of Ontario Dairy Farms: A Microeconometric Analysis.Can. J. Agric. Econ. 1988; 36: 187-206
- Scale economies and inefficiency of U.S. dairy farms.Am. J. Agric. Econ. 2009; 91: 777-794
- Greenhouse gas abatement strategies and costs in French dairy production.J. Clean. Prod. 2019; 236: 1-11
- Anthropogenic and Natural Radiative Forcing.in: Stocker T.F. Qin D. Plattner G.-K. Tignor M. Allen S.K. Boschung J. Nauels A. Xia Y. Bex V. Midgley P.M. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York2013: 659-740
- Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions.J. Dairy Sci. 2017; 100 (28161178): 2433-2453
- Small U.S. dairy farms: can they compete?.Agric. Econ. 2009; 40: 817-825
- The economic costs of environmental regulation in U.S. Dairy farming: a directional distance function approach.Am. J. Agric. Econ. 2015; 97: 1087-1106
- The good and the bad: environmental efficiency in northeastern U.S. dairy farming.Agric. Resour. Econ. Rev. 2016; 45: 22-43
- Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions.Animal. 2012; 6 (23031525): 1512-1527
- La Contribution Climat Energie en France : fonctionnement, revenus et exonérations. The Climate-Energy Contribution in France: operation, revenues and exemptions.Point Climat. 2018; 56 (in French): 1-7
- Influences des régimes et de leur fermentation dans le rumen sur la production de méthane par les ruminants.INRA Prod. Anim. 2011; 24 (in French): 433-446
- Analysis of milk production and greenhouse gas emissions as a function of extreme variations in forage production among French dairy farms.J. Environ. Manage. 2022; 307 (35078066)114537
- Scale economies, technical efficiency, and the sources of total factor productivity growth of Quebec dairy farms.Can. J. Agric. Econ. 2016; 64: 339-363
- Dairy farm cost efficiency in leading milk-producing regions in Poland.J. Dairy Sci. 2015; 98 (26476947): 8294-8307
- Greenhouse Gas Emissions and Eco-Performance at Farm Level: A Parametric Approach.Environ. Resour. Econ. 2022; 81: 617-647
- Carbon Pricing Dashboard | Up-to-Date Overview of Carbon Pricing Initiatives.The World Bank, 2021https://carbonpricingdashboard.worldbank.org/map_dataDate accessed: February 7, 2022
- Estimation of Input Distance Functions : A System Approach.Am. J. Agric. Econ. 2015; 97: 1478-1493
- Joint Implementation Project FR1000365: “Réduction des émissions de méthane d'origine digestive par l'apport dans l'alimentation des vaches laitières de sources naturelles en Acide Alpha Linolénique (ALA)” (in French).UNFCC, Rio de Janeiro, New York2016
Weill, P., G. Chesneau, Y. Chilliard, M. Doreau, and C. Martin. 2009. Method to evaluate the quantity of methane produced by a dairy ruminant and method for decreasing and controlling this quantity. Valorex, assignee. Pat. No. WO 2009/156453 A1.
- Effects of introducing linseed in livestock diet on blood fatty acid composition of consumers of animal products.Ann. Nutr. Metab. 2002; 46 (12378041): 182-191
- Variation in the carbon footprint of milk production on smallholder dairy farms in central Kenya.J. Clean. Prod. 2020; 265: 1-15
- Diversification economies in dairy farming - Empirical evidence from Germany.Eur. Rev. Agric. Econ. 2020; 47: 1338-1365
- Greenhouse gas taxes on animal food products: Rationale, tax scheme and climate mitigation effects.Clim. Change. 2011; 108: 159-184
- Revisiting the concept of payments for environmental services.Ecol. Econ. 2015; 117: 234-243
Article info
Publication history
Publication stage
In Press Corrected ProofIdentification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy