Assessment of stability and bioactive compounds in yogurt containing novel natural starter cultures with the ability to promote longevity in Caenorhabditis elegans

Miroslav Dinić, Stefan Jakovljević, Nikola Popović, Dušan Radojević, Katarina Veljović, Nataša Golić, and Amarela Terzić-Vidojević

Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade 152, Serbia

ABSTRACT

Yogurt represents one of the oldest fermented foods containing viable lactic acid bacteria and many bioactive compounds that could exhibit beneficial effects on human health and train our immune system to better respond to invading pathogens. *Streptococcus thermophilus* and *Lactobacillus delbrueckii* ssp. *bulgaricus* are commonly used for yogurt preparation under controlled temperature and environmental conditions. In this study, we investigated probiotic features of *S. thermophilus* BGKMJ1-36 and *L. bulgaricus* BGVLJ1-21 strains isolated from artisanal sour milk and yogurt by using *Caenorhabditis elegans* as an in vivo model system. Further, we evaluated content of total fat, saturated fatty acids, proteins, and lactose, as well as vitamins and AA of yogurt prepared from above-mentioned starter cultures during 21 d of storage at 4°C to get insights of final product stability. We showed that *S. thermophilus* BGKMJ1-36 and *L. bulgaricus* BGVLJ1-21 strains applied in combination upregulated the expression of autophagy-related genes in *C. elegans*. Beside autophagy, we observed activation of TIR-1-dependent transcription of lysozyme-like antimicrobial genes involved in the immune defense of *C. elegans*. Upregulation of these genes strongly correlates with an increase in the longevity of the worms fed with yogurt culture bacteria. Further, we showed that yogurt prepared with *S. thermophilus* BGKMJ1-36 and *L. bulgaricus* BGVLJ1-21, as a final product, is rich with vitamin B2 and dominant AA known by their pro-longevity properties. Taken together, our study pointed to the beneficial features of the tested starter cultures and yogurt and highlighted their potential to be used as a fermented food with added-value properties.

Key words: *Lactobacillus bulgaricus*, *Streptococcus thermophilus*, longevity, *Caenorhabditis elegans*, yogurt

INTRODUCTION

Over a century ago, Elie Metchnikoff pointed out the importance of gut microbiota in human health and healthy aging (Gordon, 2016). Guided by his observations that people with high yogurt consumption also showed increased longevity and better health, he advocated the consumption of fermented foods to manipulate the gut microbiome and promote the growth of beneficial bacteria (Bischoff, 2016). Lactic acid bacteria (LAB) used for yogurt preparation inhabit the gastrointestinal tract and exert various beneficial effects on human health (Aslam et al., 2020). To date, many studies have confirmed the prolongevity role of LAB by using *Caenorhabditis elegans* as a model organism suitable for aging research and host-microbe interaction studies (Heintz and Mair, 2014). The *C. elegans* genome possesses homologues of about two-thirds of all human genes, making it an excellent model system for studying various cellular pathways linked with human aging (Zhang et al., 2020). Experiments conducted on this soil bacterivore nematode with a short lifespan showed that different strains of lactobacilli used for fermented foods preparation can stimulate evolutionary-conserved longevity-promoting mechanisms important for the aging process in humans. These mechanisms, such as HLH-30 dependent autophagy, SKN-1 mediated antioxidative response, p38 MAPK immune pathway, and serotonin signaling, have been shown to be activated by LAB to delay somatic aging (Nakagawa et al., 2016; Dinić et al., 2021a; Kumar et al., 2022). Moreover, dietary lactobacilli could improve lipid metabolism and mitochondrial function in the worms and increase resistance to different pathogens (Dinić et al., 2021a,b).

Yogurt is a fermented milk product produced for several millennia, which is evidenced by Indian Ayurvedic scripts from about 6000 BC (Fisberg and Machado, 2015). According to the Codex Standard for fermented...
Yogurt contains many bioactive compounds that enhance the host immune system, such as bacteriocins, vitamins, AA and peptides, metabolic enzymes, short-chain fatty acids, antioxidants, anti-inflammatory and immune-modulating agents, and exopolysaccharides (EPS) (Clough and Kamal-Eldin, 2020). Regular consumption of yogurt boosts immunity and protects the host against pathogens, lowers blood pressure, reduces obesity and the possibility of colon cancer, and improves the general health status of the host (Balcells et al., 2017; Buendia et al., 2018; Górska et al., 2019). In addition, the low lactose content in yogurt caused by the conversion of lactose to lactic acid by starter cultures is better tolerated by individuals with lactose intolerance. (Faciioni et al., 2020). And finally, the low pH of yogurt inhibits the growth of different foodborne pathogenic bacteria (Lund et al., 2020).

In our previous study, we formulated yogurt containing natural starter cultures with health-promoting properties: S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21. Both strains showed the high capability to adhere to intestinal Caco-2 cells without triggering proinflammatory cytokines and significantly upregulated the expression of autophagy, tight-junction proteins, and antimicrobial-peptide–related genes and thus improved the gut epithelial barrier (Popović et al., 2020).

As we previously demonstrated excellent probiotic features of selected starter cultures in in vitro settings, the objective of this work was studying their beneficial effect and evaluation of their properties on the whole organism by using C. elegans as an in vivo model. Further, we analyzed the stability and changes in the chemical composition, as well as the composition of vitamins and free AA in yogurt, as a final product, during its storage for 21 d at a refrigeration temperature of 4°C.

MATERIALS AND METHODS

Bacteria Cultivation and Treatment

Probiotic strains S. thermophilus BGKMJ1-36 with the accession number LMG P-31742 and L. bulgaricus BGVLJ1-21 under the accession number LMG P-28578, both deposited in the Belgian Coordinated Collections of Microorganisms, Laboratory for Microbiology, University of Gent (BCCM/LMG), were isolated from artisanal sour milk and yogurt manufactured in households settled in the villages Jabuka and Miečiške Mehanė, Serbia, respectively (Popović et al., 2020). Cultivation of S. thermophilus BGKMJ1-36 was performed in M17 medium (Merck GmbH) with an addition of 0.5% (wt/vol) of glucose (GM17), and L. bulgaricus BGVLJ1-21 was cultured in deMan-Rogosa-Sharpe medium (Merck GmbH). Both strains were incubated anaerobically in a CO₂ incubator (HERAcell 150, Thermo Electron LED GmbH) with 5% of CO₂ at 37°C (Popović et al., 2020). The Escherichia coli OP50 (OP50) for C. elegans maintenance was cultivated aerobically overnight in Luria-Bertani medium at 37°C with shaking. Overnight grown cultures of S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 were centrifuged at 5,000 × g for 10 min at room temperature, and the obtained pellet was washed twice in PBS and resuspended in the Luria-Bertani medium like OP50, to exclude different medium influence on worms. The nematode growth medium (NGM) treatment plates were prepared by spreading the single bacterial suspension (OP50, BGK MJ1-36, or BGVLJ1-21) or yogurt bacterial mixture (BGKMJ1-36: BGVLJ1-21 = 1:3) on plates and dried at room temperature.

C. elegans Maintenance

Caenorhabditis elegans wild-type N₂ (Bristol) strain was maintained on NGM plates seeded with OP50 strain at 20°C by following standard protocols. Worms’ synchronization from mix population of egg-bearing worms was done by extracting eggs with the cleaning solution containing 0.5 M NaOH with 1% of Na-hypochlorite and then washing them with M9 buffer (3 g of KH₂PO₄, 6 g of Na₂HPO₄, 5 g of NaCl, and 1 mL of 1 M MgSO₄, all from Sigma-Aldrich) at least 3 times. Eggs were plated on OP50-seeded NGM plates and incubated overnight at 20°C to obtain synchronized animals. After 2 d of hatching, age-synchronous worms in the fourth larval (L₄) stage, which is the last deve-
opmental stage before adulthood, were transferred to plates containing the appropriate bacterial treatment.

Lifespan Analysis

Worms in the L4 developmental stage were transferred to OP50, BGKMJ1-36, or BGVLJ1-21 treatment plates (3.5-cm plates) containing 20 μM 5-fluorodeoxyuridine (Sigma-Aldrich) to avoid progeny hatching. In total, 75 worms per condition (25 worms per plate) were used in all treatments. The first day of adulthood was calculated as d 1 in lifespan measurement. Animals were scored every other day by prodding with a silver wire, and live worms were transferred to new plates with fresh treatment. The worms that escaped, or died due to internal hatching or protrusions, were not included in the analysis.

RNA Isolation and Quantitative Real-Time PCR

For gene expression analysis, L4 stage worms were incubated overnight on the 9-cm plates seeded with appropriate treatment and collected with M9 buffer. Total RNA was extracted using Trizol reagent (Thermo Fisher Scientific). Isolated RNA was subsequently treated with DNase I (DNA-free DNA Removal Kit) according to the manufacturer’s protocol (Thermo Fisher Scientific). Reverse-transcription was done using RevertAid Reverse Transcriptase (Thermo Fisher Scientific) with random hexamers (Thermo Fisher Scientific) and RiboLock RNase inhibitor (Thermo Fisher Scientific) in the reactions. As a template for cDNA synthesis, 0.5 μg of isolated RNA was used. Synthesized cDNA was then subjected to quantitative real-time PCR analysis using FastGene IC Green 2× PCR Universal Mix (Nippon Genetics Europe GmbH) in a 7,500 real-time PCR machine (Applied Biosystems) under the following conditions: 2 min at 95°C activation, 40 cycles of 5 s at 95°C, and 30 s at 60°C. Normalization of the expression was done against the act-1 gene by using the 2−ΔΔCt method. Primers used in the study are listed in Table 1 and were purchased from Thermo Fisher Scientific. For each condition, 3 independent replicates were used.

Yogurt Manufacturing

Yogurt was manufactured from commercial pasteurized cow milk with 2% fat (dairy in Subotica, Serbia). Overnight cultivation of 2% inoculum of BGKMJ1-36 and BGVLJ1-21 starter cultures, previously grown anaerobically at 37°C for 16 h in GM17 and deMan-Rogosa-Sharpe broth, respectively, was further incubated anaerobically at 37°C for 16 h in GM17 and deMan-Rogosa-Sharpe broth, respectively, was further incubated in water-bath at 37°C. After incubation, starter cultures were added in 4 L of pasteurized milk, in an amount of 3% of the total milk amount in a 1:3 ratio of BGKMJ1-36:BGVLJ1-21. Glass bottles with inoculated milk were incubated anaerobically at 37°C. After incubation, starter cultures were added in 4 L of pasteurized milk, in an amount of 3% of the total milk amount in a 1:3 ratio of BGKMJ1-36:BGVLJ1-21. Glass bottles with inoculated milk were incubated at 42°C for 5 to 5.5 h until the pH value was decreased to about 4.8 and then rapidly cooled in containers with ice to avoid whey extraction. When the temperature

Table 1. List of primers used in this study for evaluation of the expression of autophagy and immune-related genes in Caenorhabditis elegans

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Primer sequence 5′-3′</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>act-1 forward</td>
<td>TGCAGAAGAAAAATCACGG</td>
<td>Dinić et al., 2021a</td>
</tr>
<tr>
<td>act-1 reverse</td>
<td>CGGACTCTTGCTATTCTTG</td>
<td>Dinić et al., 2021a</td>
</tr>
<tr>
<td>unc-51 forward</td>
<td>GCTTTTGGAAAAACCCCC</td>
<td>Dinić et al., 2021a</td>
</tr>
<tr>
<td>unc-51 reverse</td>
<td>CAGGACTTGTGAATCTCGTA</td>
<td>Dinić et al., 2021a</td>
</tr>
<tr>
<td>kbh-30 forward</td>
<td>GTTTCGCTCCCAAATCAGA</td>
<td>Dinić et al., 2021a</td>
</tr>
<tr>
<td>kbh-30 reverse</td>
<td>GATGCGTCTGCTGCATCTTC</td>
<td>Dinić et al., 2021a</td>
</tr>
<tr>
<td>atg-7 forward</td>
<td>ACTCACAAGCTGAAGTTCTCCA</td>
<td>Dinić et al., 2021a</td>
</tr>
<tr>
<td>atg-7 reverse</td>
<td>CCAGGCGTGACATCTTCAAT</td>
<td>Dinić et al., 2021a</td>
</tr>
<tr>
<td>atg-18 forward</td>
<td>TTGAAATTGCAGCTTGCAGTA</td>
<td>Dinić et al., 2021a</td>
</tr>
<tr>
<td>atg-18 reverse</td>
<td>GGTAGACGCTTCGCTTGT</td>
<td>Current study</td>
</tr>
<tr>
<td>lgg-2 forward</td>
<td>AAGAAGGCATTTCCATGACG</td>
<td>Current study</td>
</tr>
<tr>
<td>lgg-2 reverse</td>
<td>ACAATTGACA</td>
<td>Current study</td>
</tr>
<tr>
<td>sqstm-1 forward</td>
<td>TCAACGACCTTGCAACTCC</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>sqstm-1 reverse</td>
<td>GGGTGAAGTGGTGGAAGCAGAT</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>tir-1 forward</td>
<td>CCGACCACAAAAAATGCG</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>tir-1 reverse</td>
<td>CTGGTGCACCCAGATCTCTTCT</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>lgs-3 forward</td>
<td>TGCAAGAATCTGGTCGTTGT</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>lgs-3 reverse</td>
<td>GTCGGCTGTCTCAATGTC</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>lgs-5 forward</td>
<td>TGGCATGTTGGAATGTCGAC</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>lgs-5 reverse</td>
<td>CATCGACATCATGAGGCCA</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>abf-2 forward</td>
<td>TTCCTTGACACTTCTCTGGC</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>abf-2 reverse</td>
<td>GACGACCGCTTCGTTTCTTG</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>spp-1 forward</td>
<td>TCGTGGAGGCTGGGAGAAG</td>
<td>Dinić et al., 2021b</td>
</tr>
<tr>
<td>spp-1 reverse</td>
<td>ACGCCTCTGCTGGAGAATCC</td>
<td>Dinić et al., 2021b</td>
</tr>
</tbody>
</table>

Journal of Dairy Science Vol. 106 No. 11, 2023
of fermented milk dropped to about 15°C, bottles were shaken to obtain a homogenized, uniform viscous, liquid dairy product—yogurt. Further, the yogurt was cooled to 4°C in the refrigerator and stored for stability and bioactive compounds assessment.

Analysis of Chemical Composition and Content of Vitamins and AA of Pasteurized Milk and Yogurts During Storage

The pH values of pasteurized milk used for yogurt preparation, yogurt immediately after production, and yogurts after 7, 14, and 21 d of storage at 4°C were measured by pH Meter pH-2005 (Selecta). Analysis of the chemical composition and content of vitamins and AA of pasteurized milk and yogurts during the storage period at 4°C was done by accredited SP Laboratory (accreditation number 01-018; Bečej, Serbia) registered under number GMP049738. SP Laboratory fulfills the requirements of ISO/IEC17025:2017 standard (SRPS EN ISO/IEC, 2017) and is competent to perform testing activities. Valid scope of accreditation can be found at www.ats.rs.

The determination of fat according to Gerber (32/83, Official Gazette of the SFRY, 1983) is based on dissolving all ingredients of milk and yogurt, except fat, in sulfuric acid. Droplets of milk fat are separated by centrifugal force on the surface by adding amyl alcohol. The amount of fat is read directly on the butyrometer scale and is expressed as the number of grams of fat in 100 g of sample. The method of determination of SFA from C6:0 to C22:6 (ISO method 12966-1, SRPS EN, 2014f) is based on the method of GC with a flame ionization detector and according to the fast transmethylation model with methanol in the presence of potassium hydroxide (KOH) as an alkaline catalyst. The method is applied to samples that have a minimum fatty acid content of 0.02%. Determination of protein content was done according to ISO method 14891 (SRPS EN ISO, 2012). Purification of the extract containing vitamin D₃ is performed on a system for normal-phase chromatography by collecting the eluate fraction containing vitamin D₃. Determination of vitamin D₃ from the eluate is performed on a system for reverse-phase chromatography with a diode array detector. Quantification of vitamin D₃ is performed using the internal standard method, wherein the internal standard is vitamin D₂. The method is applied in food at a concentration of 0.75 μg/100 g or 0.75 μg/100 mL of vitamin D₂ or 30 IU/100 g or 30 IU/100 mL of vitamin D₃. An HPLC with a fluorescent detector was used to determine content of vitamin B₁ (method 14122, SRPS EN, 2014c) and vitamin B₂ (method 14152, SRPS EN, 2014d). Both vitamins B₁ and B₂ are extracted from the samples by acid hydrolysis followed by dephosphorylation by the action of enzymes. Vitamin B₁ is oxidized to thiochrome in the derivatization process with potassium hexacyanoferrate III solution and quantified as such. The methods are applied in food at a concentration of 0.1 mg/100 g or 0.1 mg/100 mL. The method of determination of content of vitamin B₆ or pyridoxin (method 14164, SRPS EN, 2014e) is based on HPLC with a fluorescent detector. This method does not include the β-glycoside forms of vitamin B₆. Pyridoxal, pyridoxamine, and pyridoxine are extracted from samples by acid hydrolysis with HCl solution, which is followed by enzymatic dephosphorylation using acid phosphatase enzymes. By reacting with glyoxal acid in the presence of Fe²⁺ as a catalyst, pyridoxamine is converted into pyridoxal, which is then reduced to pyridoxine in a reaction with sodium borohydride in a basic medium and is quantified in that form. The method is applied in food at a concentration of 0.1 mg/100 g or 0.1 mg/100 mL.

Amino acids such as L-lysine, L-alanine, L-threonine, glycine, L-valine, L-serine, L-proline, L-isoleucine, L-leucine, L-methionine, L-histidine, L-phenylalanine, L-glutamate, L-aspartate, L-cystine, L-tyrosine, and...
L-arginine were determined using ISO method 13903 standard (SRPS EN ISO, 2005). This method defines the method of sample preparation (acid hydrolysis with HCl) for the determination of AA using ion chromatography with an electrochemical detector, silver reference electrode (Ag/AgCl) and a gold working electrode (Au). The method is applied to food in a concentration of min 0.01%.

Statistical Analysis

All results are presented as mean values ± standard deviation. Student’s *t*-test was used to compare the differences between control and treatment groups. The differences between survival curves in lifespan measurement were analyzed by using the log-rank (Mantel-Cox) test. A *P*-value less than 0.05 was considered statistically significant. The statistical analysis was performed and graphs were drawn in GraphPad Prism 9 software (https://www.graphpad.com).

RESULTS

Yogurt Starter Cultures Increased Longevity of *Caenorhabditis elegans*

To examine the beneficial effect of *S. thermophilus* BGK MJ1-36 and *L. bulgaricus* BGVLJ1-21, we first assessed their effect on worms aging, as a main visible indicator of dietary beneficial effects. By measuring the worm’s lifespan, we were able to show that the *S. thermophilus* BGK MJ1-36 strain exhibited a significant increase (*P* = 0.0001) in both median and maximal lifespan, compared with OP50 treated control worms (Figure 1A). However, worms fed *L. bulgaricus* BGVLJ1-21 had the same lifespan as OP50 treated worms, but without causing some negative effects on the worms’ health (Figure 1B). More importantly, the final combination of both strains, BGK MJ1-36/BGVLJ1-21 in ratio design for yogurt preparation, also showed a significant increase (*P* = 0.0055) in median and maximal lifespan (Figure 1C). Overall, these results indicate that the yogurt bacteria in combination are able to delay aging of the host and imply that both strains are compatible for yogurt formulation and could trigger strain-specific beneficial effects.

Yogurt Mixed Starter Culture BGK MJ1-36/BGVLJ1-21 Upregulated Expression of Autophagy-Related Genes in *Caenorhabditis elegans*

To gain further insights into the mechanisms behind observed prolongevity effect, we first evaluated autophagy, previously shown to be triggered by the *S. thermophilus* BGK MJ1-36 and *L. bulgaricus* BGVLJ1-21 combination in epithelial Caco-2 cells (Popović et al., 2020). Autophagy is one of the major cellular catabolic processes that regulate epithelial barrier homeostasis and promotes a healthy gut, and reports showed that it could be modulated by LAB in both in vitro and in vivo conditions (Inaba et al., 2016; Haq et al., 2019; Soković Bajić et al., 2020). Therefore, to confirm our in vitro data and translate our research, we performed a quantitative real-time PCR analysis of autophagy-relevant genes in the *C. elegans* N2 strain. The results revealed that worms fed overnight with yogurt mixed starter culture BGK MJ1-36/BGVLJ1-21 exhibited upregulated levels of genes involved in all steps of the autophagy process, including autophagy induction (*unc-51; P* = 0.0406), autophagosome expansion (*alg-7, P* = 0.03; *lgg-2, P* = 0.0073), and retrieval of proteins for autophagy degradation (*sqstm-1; P* = 0.0088), compared with OP50 treated control worms.

Figure 1. Yogurt starter cultures affect longevity of *Caenorhabditis elegans*. Lifespan curve of *N. elegans* worms fed with control *Escherichia coli* OP50 and *Streptococcus thermophilus* BGK MJ1-36 (A), *Lactobacillus delbrueckii* sp. *bulgaricus* BGVLJ1-21 (B), and *S. thermophilus* BGK MJ1-36 and *L. bulgaricus* BGVLJ1-21 in a ratio of 1:3 (C) from the fourth larval (L4) stage, which is the last developmental stage before adulthood, maintained at 20°C (*n* = 75 worms per group). All values are presented as mean ± SD. The differences between survival curves were analyzed by using the log-rank (Mantel-Cox) test.
with OP50 treated worms (Figure 2). The atg-18 gene, also responsible for the increased longevity of C. elegans (Lapierre et al., 2011), showed slight upregulation and almost reached statistical significance with a \(P \)-value of \(P = 0.0564 \). Finally, significantly increased expression of the hlh-30 gene \((P = 0.0033) \), that codes an ortholog of mammalian transcription factor EB (TFEB) was observed (Figure 2). Taken together, our data pointed out that autophagy stimulation correlates with lifespan extension triggered by the \(S. \) thermophilus \(\text{BGKMJ1-36} \) and \(L. \) bulgaricus \(\text{BGVLJ1-21} \) combination.

Yogurt Mixed Starter Culture BGKMJ1-36/BGVLJ1-21 Triggered TIR-1 Mediated Immune Response and Expression of Lysozyme-Like Antimicrobial Proteins in C. elegans

The most common effect of yogurt cultures on human health is the ability to increase the body’s resistance to pathogens mainly via 2 mechanisms: (1) inhibition of pathogenic bacteria by bacteriocins production and by reduction of the pH and free oxygen levels, and (2) by reinforcement of the epithelial barrier and mucosal
immunity (Hori et al., 2020). We showed that the *S. thermophilus* BGKMJ1-36 and *L. bulgaricus* BGVLJ1-21 combination could stimulate the expression of tight-junctions encoding genes together with human β-defensin 1 in vitro (Popović et al., 2020). Here, we evaluated the induction of conserved immune signaling in worms after overnight treatment of the worms with a yogurt bacteria combination. In addition to the negligible role of toll-like protein TOL-1 in worms’ defense, another gene product containing toll/IL-1R (TIR) protein-protein interaction domain (TIR-1) emerged as a major defense factor in *C. elegans*, acting as an upstream activator of the PMK-1 pathway that corresponds to mammalian p38 MAPK (Ermolaeva and Schumacher, 2014). We started with measuring the *tir-1* expression and noticed that the yogurt mixed starter culture BGKMJ1-36/BGVLJ1-21 significantly stimulated the expression of this gene (*P* = 0.0354). Further, from a variety of *C. elegans* antimicrobials, we detected that worms treated with the yogurt mixed starter culture BGKMJ1-36/BGVLJ1-21 had higher mRNA levels of lysozyme-like antimicrobial genes (*lys-3, P* = 0.0350; and *lys-5, P* = 0.0006), but transcription of antimicrobial peptides *abf-2* and *spp-1* were at the same level as in the control (Figure 3). Therefore, in addition to the already demonstrated direct antimicrobial effects of *S. thermophilus* BGKMJ1-36 and *L. bulgaricus* BGVLJ1-21 (Popović et al., 2020), we confirmed the ability of the mixed starter culture BGKMJ1-36/BGVLJ1-21 to increase immune surveillance at the organism level.

Characterization of the Yogurt Starter Cultures

Physiological, biochemical, technological, and probiotic characterization of *L. bulgaricus* BGVLJ1-21 and *S. thermophilus* BGKMJ1-36 were done previously (Popović et al., 2020). Both strains curdled the milk for about 5 h at 42°C. The strain *L. bulgaricus* BGVLJ1-21 showed better proteolytic activity than *S. thermophilus* BGKMJ1-36. Also, *L. bulgaricus* BGVLJ1-21 and *S. thermophilus* BGKMJ1-36 inhibited the growth of *Listeria monocytogenes* ATCC19111. In addition, *S. thermophilus* BGKMJ1-36 is an EPS producer. Growth kinetics of *L. bulgaricus* BGVLJ1-21 and *S. thermophilus* BGKMJ1-36 strains showed that the total number of viable bacteria in yogurt immediately after production was 10^6 cfu/mL, and after a 21-d storage period at 4°C, that number was slightly lower and was 10^5 cfu/mL of yogurt (Popović et al., 2020).

Yogurt cultures are usually added to milk in a ratio of 1:1, and it’s best to add them separately in milk when preparing a new amount of yogurt. Otherwise, the ratio between cultures could be changed and yogurt would not be of appropriate quality (Hutkins, 2006). In our study, formulation of final product was done by mixing starter cultures *S. thermophilus* BGKMJ1-36 and *L. bulgaricus* BGVLJ1-21 in a ratio of 1:3 instead of the previously used ratio of 1:2 (Popović et al., 2020) for 2 reasons: (1) to reduce the density of yogurt due to the extreme EPS production by BGKMJ1-36 strain, and (2) to reduce the pH drop-value of the final product during storage. Literature data showed that *S. thermophilus* is primarily responsible for the creation of lactic acid, thus lowering the pH value of the fermented product (Sabbah et al., 2012). Initial measurement after yogurt production showed that the pH value was 4.82 and slowly decreased to 4.61 after 21 d of storage at 4°C (Table 2). The 1:2 ratio of BGKMJ1-36:BGVLJ1-21 decreased pH value from 4.74 initially to 4.13 after 21 d of storage at 4°C (Popović et al., 2020), which made it a little bit sour to consumers. Therefore, in this study, we changed the ratio of BGKMJ1-36 and BGVLJ1-21 to 1:3, to improve the flavor of the final product.

Changes in the Chemical Composition and Vitamins Content During Yogurt Storage at 4°C

Further, in Table 2 the results of the content of basic chemical components including total fat, SFA, proteins, and lactose in pasteurized cow milk and yogurt immediately after production and during the 3-wk storage at 4°C are presented. The results of measuring of the content of basic chemical parameters showed that the content of fat, SFA, and proteins in pasteurized cow milk, yogurt immediately after production, and yogurt after 21 d of storage at 4°C were unchanged and stable (Table 2). However, lactose concentration was measured to be 4.5% in pasteurized milk and decreased to 2.88% in yogurt immediately after production, and it remained at that level (2.8%) after 21 d of storage at 4°C (Table 2).

Although in very low concentrations, vitamins are essential bioactive compounds necessary in human nutrition. Milk and dairy products are an important source of various vitamins, especially group B vitamins, except biotin (Graulet and Girard, 2017). In our study, we identified vitamin B2 (riboflavin) as the most abundant of all vitamins. The concentration of vitamin B2 in pasteurized milk was 0.17 mg/100 g, and this value slightly increased to 0.18 mg/100 g in 21-d stored yogurt (Table 3). However, contents of vitamins A, D₃, E, B₁, and B₉ were detected as less than 0.1 mg/100 g (for vitamin D₃, μg/100 g) in pasteurized milk and in yogurts during a storage period at 4°C (Table 3).
During lactic acid fermentation, the proteins are partially degraded into peptides and free AA by the action of bacterial proteolytic enzymes, which contribute directly to the taste and flavor of the final product (Lim et al., 2009). Results obtained after analyzing the AA composition of commercial pasteurized cow milk and yogurt immediately after production and during a storage period of 21 d at 4°C are listed in Table 4. The content of 17 AA was monitored, including EAA such as lysine, threonine, valine, isoleucine, leucine, methionine, histidine, phenylalanine, and arginine. It can be noticed that leucine, a branched-chain AA that regulates metabolic health, health span, and aging (Babygirija and Lamming, 2021), is detected in the highest

Figure 3. Yogurt starter cultures upregulate the immune defense of *Caenorhabditis elegans*. Expression of the *tir-1* (A) and antimicrobial genes including *lys-3* (B), *lys-5* (C), *spp-1* (D), and *abf-2* (E) was measured by quantitative real-time PCR in the fourth larval (L4) stage N2 worms after overnight feeding with control *Escherichia coli* OP50 and a combination of *Streptococcus thermophilus* BGKMJ1-36 and *Lactobacillus delbrueckii* spp. *bulgaricus* BGVLJ1-21 in a ratio of 1:3 (n = 3; 3 independent experiments). All values are presented as mean ± SD. Student’s *t*-test was used for statistical comparison between 2 groups.

AA Composition During Yogurt Storage at 4°C

During lactic acid fermentation, the proteins are partially degraded into peptides and free AA by the action of bacterial proteolytic enzymes, which contribute directly to the taste and flavor of the final product (Lim et al., 2009). Results obtained after analyzing the AA composition of commercial pasteurized cow milk and yogurt immediately after production and during a storage period of 21 d at 4°C are listed in Table 4. The content of 17 AA was monitored, including EAA such as lysine, threonine, valine, isoleucine, leucine, methionine, histidine, phenylalanine, and arginine. It can be noticed that leucine, a branched-chain AA that regulates metabolic health, health span, and aging (Babygirija and Lamming, 2021), is detected in the highest
concentration (0.36%). In contrast, the concentration of methionine and histidine was the lowest (0.09% and 0.05%, respectively). All 17 AA detected in pasteurized milk were detected also in yogurt after 21 d of storage at 4°C. Contents of lysine, alanine, glutamate, and arginine in 21-d-old yogurt were higher than in pasteurized milk. Higher contents of histidine and aspartate were in yogurt immediately after production, with lysine and glutamate in yogurt stored for 7 d, and the highest content of arginine was recorded in 14- and 21-d-old yogurt, compared with the content in pasteurized milk and yogurt immediately after production (Table 4).

DISCUSSION

In the present study, we reported the potential of yogurt mixed starter cultures containing *S. thermophilus* BGKMJ1-36 and *L. bulgaricus* BGVLJ1-21 strains to stimulate expression of autophagy and immune-related genes in *C. elegans*, which contributed to an increase in lifespan of the worms studied. Lifespan extension achieved with yogurt mixed starter cultures BGKMJ1-36/BGVLJ1-21 was comparable to that induced by the *S. thermophilus* BGKMJ1-36 strain when applied alone, suggesting that prolongevity signals probably come from *S. thermophilus* BGKMJ1-36. A recent study already showed that *S. thermophilus* could extend the lifespan of *C. elegans* through the activation of DAF-16-mediated upregulation of superoxide dismutase and catalase antioxidative genes (Desaka et al., 2022). The probiotic effects of LAB are generally reflected in the interaction between bacterial biomolecules, either cell wall bound or secreted, and the host (Lebeer et al., 2010). The strain *S. thermophilus* BGKMJ1-36 has the capability of producing a viscous extracellular polysaccharide biomolecule, EPS, which covers all bacterial surface and shields other bacterial biomolecules and antigens (Nikolic et al., 2012; Popović et al., 2020). Exopolysaccharides are responsible for rheological properties of the yogurt formulation, giving it a fine viscous texture (Folkenberg et al., 2006). In addition to technological properties, EPS produced by various LAB possess immunomodulatory activity but also can promote autophagy and protect the host from enteropathogens invasion (Zivkovic et al., 2015; Dinić et al., 2018; Yuan et al., 2021).

In addition, bacterial-produced polysaccharides, such as colanic acid, could extend host longevity (Han et al., 2017). Therefore, all these data pointed out that EPS could contribute to the observed prolongevity ef-
effects of S. thermophilus BGKMJ1-36. In contrast, other reports showed that commercial and foodborne isolates of L. bulgaricus could also increase worms’ longevity, but the mechanism remained unknown (Zanni et al., 2017). However, we did not notice this effect with the L. bulgaricus BGVLJ1-21 strain, which suggests that the longevity-induced potential of the LAB are strain-specific. Even though L. bulgaricus BGVLJ1-21 did not alter the worms’ lifespan, we previously showed that L. bulgaricus BGVLJ1-21 possesses other beneficial qualities, such as antimicrobial activity toward foodborne pathogen Listeria monocytogenes, and has an important role in the immune function, PMK-1, similar to HLH-30, also contributes to longevity by activating the transcription of lysozymes and mediated higher worm signaling (Yuan et al., 2021). Further, interplay of S. thermophilus and L. bulgaricus with autophagy in in vivo conditions is only reported in the study where these 2 species were part of a formulation made of 9 live bacterial strains that showed restoration of impaired neuronal autophagy in mice (Bonfili et al., 2017). This treatment involved application of 9 LAB strains; it is not clear what was the contribution of individual strains in autophagy modulation. Biomolecules and metabolites that are LAB-derived or C. elegans bioactive molecules that are produced in response to its interaction with these 2 strains could be responsible for the upregulation of autophagy-related genes, especially considering that EPS molecule has been already linked with autophagy signaling (Yuan et al., 2021).

Besides autophagy, we demonstrated that the combination of S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 strains stimulated expression of the genes involved in immune defense of C. elegans. Similar results were obtained for the Lactobacillus curvatus BGMK2-41 probiotic strain, which showed the capability to induce PMK-1/p38 MAPK dependent transcription of lysozymes and mediated higher worm resistance toward Staphylococcus aureus and Pseudomonas aeruginosa (Dinić et al., 2021b). In addition to its immune function, PMK-1, similar to HLH-30, also contributes to longevity by activating the transcription of different sets of genes related mainly to oxidative stress (Ermolaeva and Schumacher, 2014). Even though no data exists regarding the effects of these 2 bacterial species on worms’ immunity, a recent report showed that L. bulgaricus ME-552 (ME552) and S. thermophilus

Table 4. Amino acid content (± SD) of pasteurized milk and yogurt of different periods of storage at 4°C

<table>
<thead>
<tr>
<th>AA (%)</th>
<th>Pasteurized milk</th>
<th>1-d yogurt</th>
<th>7-d yogurt</th>
<th>14-d yogurt</th>
<th>21-d yogurt</th>
</tr>
</thead>
<tbody>
<tr>
<td>l-Lysine</td>
<td>0.19 ± 0.038</td>
<td>0.25 ± 0.050</td>
<td>0.28 ± 0.056</td>
<td>0.25 ± 0.050</td>
<td>0.21 ± 0.042</td>
</tr>
<tr>
<td>l-Alanine</td>
<td>0.11 ± 0.022</td>
<td>0.1 ± 0.02</td>
<td>0.16 ± 0.032</td>
<td>0.17 ± 0.034</td>
<td>0.12 ± 0.024</td>
</tr>
<tr>
<td>l-Threonine</td>
<td>0.19 ± 0.038</td>
<td>0.17 ± 0.034</td>
<td>0.15 ± 0.030</td>
<td>0.14 ± 0.028</td>
<td>0.13 ± 0.026</td>
</tr>
<tr>
<td>Glycine</td>
<td>0.12 ± 0.024</td>
<td>0.11 ± 0.022</td>
<td>0.06 ± 0.012</td>
<td>0.07 ± 0.014</td>
<td>0.08 ± 0.016</td>
</tr>
<tr>
<td>l-Valine</td>
<td>0.19 ± 0.038</td>
<td>0.19 ± 0.038</td>
<td>0.18 ± 0.036</td>
<td>0.1 ± 0.02</td>
<td>0.16 ± 0.032</td>
</tr>
<tr>
<td>l-Serine</td>
<td>0.23 ± 0.046</td>
<td>0.21 ± 0.042</td>
<td>0.22 ± 0.044</td>
<td>0.2 ± 0.04</td>
<td>0.15 ± 0.030</td>
</tr>
<tr>
<td>l-Proline</td>
<td>0.32 ± 0.064</td>
<td>0.31 ± 0.062</td>
<td>0.31 ± 0.062</td>
<td>0.27 ± 0.054</td>
<td>0.24 ± 0.048</td>
</tr>
<tr>
<td>l-Isoleucine</td>
<td>0.17 ± 0.034</td>
<td>0.16 ± 0.032</td>
<td>0.13 ± 0.026</td>
<td>0.18 ± 0.036</td>
<td>0.15 ± 0.030</td>
</tr>
<tr>
<td>l-Leucine</td>
<td>0.36 ± 0.072</td>
<td>0.34 ± 0.068</td>
<td>0.24 ± 0.048</td>
<td>0.4 ± 0.08</td>
<td>0.34 ± 0.068</td>
</tr>
<tr>
<td>l-Methionine</td>
<td>0.09 ± 0.018</td>
<td>0.09 ± 0.018</td>
<td>0.06 ± 0.012</td>
<td>0.09 ± 0.018</td>
<td>0.07 ± 0.014</td>
</tr>
<tr>
<td>l-Histidine</td>
<td>0.05 ± 0.010</td>
<td>0.09 ± 0.018</td>
<td>0.08 ± 0.016</td>
<td>0.08 ± 0.016</td>
<td>0.07 ± 0.014</td>
</tr>
<tr>
<td>l-Phenylalanine</td>
<td>0.1 ± 0.02</td>
<td>0.12 ± 0.024</td>
<td>0.13 ± 0.026</td>
<td>0.11 ± 0.022</td>
<td>0.12 ± 0.024</td>
</tr>
<tr>
<td>l-Glutamate</td>
<td>0.54 ± 0.108</td>
<td>0.6 ± 0.12</td>
<td>0.69 ± 0.138</td>
<td>0.65 ± 0.130</td>
<td>0.6 ± 0.12</td>
</tr>
<tr>
<td>l-Aspartate</td>
<td>0.24 ± 0.048</td>
<td>0.26 ± 0.052</td>
<td>0.24 ± 0.048</td>
<td>0.22 ± 0.044</td>
<td>0.22 ± 0.044</td>
</tr>
<tr>
<td>l-Cystine</td>
<td>0.04 ± 0.008</td>
<td>0.03 ± 0.006</td>
<td>0.024 ± 0.004</td>
<td>0.01 ± 0.002</td>
<td>0.01 ± 0.002</td>
</tr>
<tr>
<td>l-Tyrosine</td>
<td>0.19 ± 0.038</td>
<td>0.18 ± 0.036</td>
<td>0.13 ± 0.026</td>
<td>0.16 ± 0.032</td>
<td>0.15 ± 0.030</td>
</tr>
<tr>
<td>l-Arginine</td>
<td>0.06 ± 0.012</td>
<td>0.07 ± 0.0142</td>
<td>0.1 ± 0.02</td>
<td>0.16 ± 0.032</td>
<td>0.14 ± 0.028</td>
</tr>
</tbody>
</table>

1Extended measurement uncertainty is expressed as a combined standard measurement uncertainty increased by the coverage factor k = 2 for a confidence level of approximately 95%.
ME-553 could modulate T-cell effector functions and enhance mucosal immunity and production of IFN-γ and IL-17 in mice (Kamiya et al., 2016).

According to literature data, the minimum therapeutic level of viable probiotic bacteria during the product shelf life should be at least 10^6 cfu/g of food labeled as a probiotic functional food (Gibson et al., 2017). They suggested that ~100 g/d of probiotic foods should be consumed, which is 10^8 to 10^9 cfu/g bacteria at the same time, and that that amount would be sufficient to cause positive physiological functions in humans. Colony-forming unit counts of both tested strains detected in the newly formulated yogurt were in accordance with these recommendations. However, in addition to probiotic starter cultures from the yogurt, milk nutrients contained in yogurt are of crucial importance in the human diet and enable normal function of the body. They can be divided into element builders (proteins, carbohydrates, and lipids) and functional elements, which include various vitamins and minerals (Pereira, 2014). Even though content of fat, SFA, and proteins were unchanged and stable in prepared yogurt, the observed decrease in lactose concentration was expected considering the activity of the starter cultures, which fermented lactose to lactic acid by their metabolic mechanism of action (Leeuwendaal et al., 2022). This is of great importance for consumers suffering from lactose intolerance who could replace regular milk with fermented products such as yogurt.

Vitamins from the yogurt represent important health-promoting nutrients, and their lack in the daily diet would have a negative effect on the overall functioning of the organism (Graulet et al., 2013). Riboflavin was the most abundant of all tested vitamins, its concentration was higher than the values of the vitamin B2 usually reported for yogurt collected from local stores in Serbia (0.13 mg/100 g; Sumarić et al., 2012). Riboflavin is a water-soluble vitamin exhibiting antioxidative, anti-inflammatory, antinociceptive, and antiaging properties (Suwannasom et al., 2020). It has been reported that the application of 120 μg/mL of vitamin B2 is sufficient to increase the longevity of fruit fly Drosophila melanogaster via an antioxidative mechanism (Zou et al., 2017). Therefore, the combination of starter cultures with longevity-promoting effects and vitamin B2 could exhibit a synergistic antiaging effect on the host. In addition, the absence of vitamins A, E, B1, B2, and B6 was in accordance with a previous study reporting that their concentration detected in cow milk were less than 0.1 mg/100 g (Temerbayeva et al., 2018). Brodziak et al. (2021) stated that the vitamin content depends on many factors, such as the milk used for yogurt production (raw milk from farm or commercial milk), along with production season, type of pasture, lactation period, and fat content. We supposed that it was the reason for lower content of certain vitamins compared with the vitamin content found in natural yogurts with 2% fat (Mojka, 2013; Brodziak et al., 2021).

Finally, the importance of AA for the human body is immeasurable. Tryptophan, tyrosine, histidine, and proline are strong antioxidants, whereas valine and leucine inhibit lipid peroxidation (Tonolo et al., 2019; Bielecka et al., 2022). In addition, Kepert et al. (2017) showed that tryptophan has an immunomodulatory effect against chronic immune diseases, especially allergic reactions. Methionine and cysteine, as AA with sulphydryl group, alleviate oxidative stress, protecting tissue against damage (Bin et al., 2017). But most importantly, arginine, lysine, glutamine, and alanine have antiaging properties and can extend the lifespan of C. elegans (Canfield and Bradshaw, 2019). We identified that with storage, the concentrations of arginine, lysine, glutamate, and alanine increase in the yogurt, suggesting that the proteases activity of L. bulgaricus BGVLJ1-21 is directed toward releasing antiaging AA from casein more than the other AA. Moreover, glutamate represents the substrate for different LAB with the capability to synthesize γ-aminobutyric acid (GABA), an inhibitory neurotransmitter important for the immunomodulatory properties of the LAB. Our previous work showed that LAB grown with glutamate can increase the expression of tight-junction proteins of the gut epithelium by producing GABA (Soković Bajić et al., 2019). Overall, according to the obtained results, the AA concentration is mainly dictated by the milk used for yogurt production, but the proteolytic activity of L. bulgaricus BGVLJ1-21 could further shift AA content by favoring the production of AA associated with increased longevity.

CONCLUSIONS

Industrial starter cultures lack the necessary characteristics for the product diversification. Because the biodiversity of commercial starter cultures is limited, they have exhausted their technological and probiotic potential. Natural LAB from artisanal dairy products could be excellent candidates for designing innovative starter cultures for the production of functional dairy foods with improved probiotic and sensory properties, comparing to those in grocery stores. Novel natural starter cultures S. thermophilus BGKMJ1-36 and L. bulgaricus BGVLJ1-21 upregulate transcription of autophagy-related genes and genes involved in immune defense necessary for longevity assurance in C. elegans. Further, our results indicate the prevalence of riboflavin and AA with prolongevity properties in the yogurt,
which altogether could exhibit a synergistic effect in terms of host longevity. Therefore, better understanding of beneficial effects of LAB enables the application of a new generation of functional LAB starters and offer technological and health benefits for the dairy community and consumers.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia under Contract No. 451-03-47/2023-01/200042. The strains *S. thermophilus* BGK MJ1-36 and *L. bulgaricus* BGVLJ1-21 are deposited in the Belgian Coordinated Collections of Microorganisms/LMG Bacterial Culture Collection, Belgium under patent deposition, and are subject of the license agreement between Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia, and Invetlab d.o.o. Belgrade, Serbia. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. No human or animal subjects were used, so this analysis did not require approval by an Institutional Animal Care and Use Committee or Institutional Review Board. The authors have not stated any conflicts of interest.

REFERENCES

ORCIDs

Miroslav Dinić ▪ https://orcid.org/0000-0001-5275-4531
Stefan Jakovljević ▪ https://orcid.org/0000-0002-9570-0565
Nikola Popović ▪ https://orcid.org/0000-0002-9036-3958
Dušan Radojević ▪ https://orcid.org/0000-0002-6287-6310
Katarina Velički ▪ https://orcid.org/0000-0003-2987-9046
Nataša Golić ▪ https://orcid.org/0000-0001-7419-9743
Amarela Terzić-Vidojević ▪ https://orcid.org/0000-0003-2919-7057