Advertisement
Article| Volume 73, ISSUE 6, P1395-1410, June 1990

Nonstarter Lactobacilli in Cheddar Cheese: A Review

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      Lactobacilli constitute the majority of nonstarter lactic acid bacteria (NSLAB) in Cheddar cheese. Species predominating are Lactobacillus casei, Lactobacillus plantarum, and Lactobacillus brevis. Typical cell densities in Cheddar cheese range from 10 to 104/g during the first 10 d to about 108/g within a few weeks postmanufacture. Numbers in cheese are affected by numbers in raw milk and the extent of postpasteurization contamination. Lactobacilli sustain growth in cheese depleted of fermentable carbohydrate by metabolizing peptides, amino acids, sugars released from enzymic hydrolysis of casein, and products of degrading starter bacteria. Lactobacilli, which require several amino acids for growth, possess numerous proteases and peptidases. Peptidases produced by L. casei include dipeptidase, tripeptidase, carboxypeptidase, aminopeptidase, and endopeptidase. Results have been variable in numerous experiments testing the use of selected lactobacilli as adjuncts to lactic starter culture for cheese ripening. Results depended on numbers, strain, type of cheese, and condition of manufacture. Shocking lactobacilli with heat, freezing, lysozyme, ultrasound, organic solvents, or alkaline conditions has been used to minimize proteolytic activity while enhancing peptidolysis. These efforts to accelerate cheese ripening by increasing amounts of active peptidases have been only partially successful.

      Key words

      References

        • Abdel Baky A.A.
        • El-Neshawy A.A.
        • Rabie A.M.
        • Ashour M.M.
        Heat-shocked lactobacilli for accelerating flavour development of Ras cheese.
        Food Chem. 1986; 21: 301
        • Abo-Elnaga I.G.
        • Plapp R.
        Peptidases of Lactobacillus casei and L. plantarum.
        J. Basic Microbiol. 1987; 27: 123
        • Adda J.
        • Gripon J.C.
        • Vassal L.
        The chemistry of flavour and texture generation in cheese.
        Food. Chem. 1982; 9: 115
        • Allais C.
        • Jolles P.
        Comparative study of the casein glycopeptides obtained after rennin digestion of the caseins of the milk of cow, ewe and goat. Part II. Study of the non-peptide part.
        Biochim. Biophys. Acta. 1961; 51: 315
        • Allen T.
        • Knowles L.
        Studies in the ripening of Cheddar cheese.
        I. Dairy Res. 1934; 5: 185
        • Argyle P.J.
        • Mathison G.E.
        • Chandan R.C.
        Production of cell-bound proteinase by Lactobacillus bulgaricus and its location in the bacterial cell.
        J. Appl. Bacteriol. 1976; 41: 175
        • Aston J.W.
        • Fedrick I.A.
        • Durward I.G.
        • Dulley J.R.
        The effect of elevated ripening temperatures on proteolysis and flavour development in Cheddar cheese. I. Higher initial storage temperatures.
        N. Z. J. Dairy Sci. Technol. 1983; 18: 143
        • Aston J.W.
        • Giles J.E.
        • Durward I.G.
        • Dulley J.R.
        Effect of elevated ripening temperatures on proteolysis and flavour development in Cheddar cheese.
        J. Dairy Res. 1985; 52: 565
        • Aston J.W.
        • Grieve P.A.
        • Durward I.G.
        • Dulley J.R.
        Proteolysis and flavour development in Cheddar cheeses subjected to accelerated ripening treatments.
        Aust. J. Dairy Technol. 1983; 38: 59
        • Baribo L.E.
        • Foster E.M.
        The intracellular proteinases of certain organisms from cheese and their relationship to the proteinases in cheese.
        J. Dairy Sci. 1952; 35: 149
        • Bartels H.J.
        • Johnson M.E.
        • Olson N.F.
        Accelerated ripening of Gouda cheese. I. Effect and elevation of thermophilic lactobacilli and streptococci on proteolysis and flavor development.
        J. Dairy Sci. 1985; (Abstr.): 69
        • Bartels H.J.
        • Johnson M.E.
        • Olson N.F.
        Accelerated ripening of Gouda cheese. 2. Effect of freeze-shocked Lactobacillus helveticus on proteolysis and flavor development.
        Milchwissenschaft. 1987; 42: 139
        • Brandsaeter E.
        • Nelson F.E.
        Proteolysis of Lactobacillus casei I. Proteinase activity.
        J. Bacteriol. 1956; 72: 68
        • Brandsaeter E.
        • Nelson F.E.
        Proteolysis by Lactobacillus casei. II. Peptidase activity.
        J. Bacteriol. 1956; 72: 73
        • Bullock D.H.
        • Irvine O.R.
        A chromatographic study of Cheddar cheese ripening.
        J. Dairy Sci. 1956; 39: 1229
        • Campbell J.R.
        • Gunsalus I.C.
        Fermentation of citric acid by homofermentative lactic acid bacteria.
        J. Bacteriol. 1942; 44: 721
        • Cantoni C.
        • Molnar M.R.
        Investigations on the glycerol metabolism of lactobacilli.
        J. Appl. Bacteriol. 1967; 39: 197
        • Castberg H.B.
        • Morris H.A.
        Degradation of milk proteins by enzymes from lactic acid bacteria used in cheese making. A review.
        Milchwissenschaft. 1976; 31: 85
        • Chapman H.R.
        • Sharpe M.E.
        Microbiology of cheese. Ch. 5.
        in: Dairy microbiology. Vol. 2. Appl. Sci. Publ., London, UK1981
        • Chassy B.M.
        • Gibson E.M.
        • Giuffrida A.
        Evidence for plasmid-associated lactose metabolism in Lactobacillus casei ssp. casei.
        Curr. Microbiol. 1978; 1: 141
        • Chassy B.M.
        • Gibson E.M.
        • Giuffrida A.
        Evidence for extrachromosomal elements in Lactobacillus.
        J. Bacteriol. 1976; 127: 1576
        • Chassy B.M.
        • Giuffrida A.
        Method for lysis of gram-positive asporogenous bacteria with lysozyme.
        Appl. Environ. Microbiol. 1980; 39: 153
        • Cocconcelli P.S.
        • Morelli L.
        • Vescovo M.
        • Bottazzi V.
        Intergeneric protoplast fusion in lactic acid bacteria.
        Fed. Eur. Microbiol. Soc. Microbiol. Lett. 1986; 35: 211
        • Cromie S.J.
        • Giles J.E.
        • Dulley J.R.
        Effect of elevated ripening temperatures on the microflora of Cheddar cheese.
        J. Dairy Res. 1987; 54: 69
        • Dacre J.C.
        Cheddar cheese flavor and its relation to tyramine production by lactic acid bacteria.
        J. Dairy Res. 1953; 20: 217
        • Davis J.G.
        Studies in Cheddar cheese. IV. Observations on the lactic flora of Cheddar cheese made from clean milk.
        J. Dairy Res. 1935; 6: 175
        • Davies F.L.
        • Gasson M.J.
        Reviews of the progress of dairy science. Genetics of lactic acid bacteria.
        J. Dairy Res. 1981; 48: 363
        • de Man J.C.
        • Rogosa M.
        • Sharpe M.E.
        A medium for the cultivation of lactobacilli.
        J. Appl. Bacteriol. 1960; 23: 130
        • Dulley J.R.
        The utilization of cheese slurries to accelerate the ripening of Cheddar cheese.
        Aust. J. Dairy Technol. 1976; 31: 143
        • Eggimann B.
        • Bachmann M.
        Purification and partial characterization of an aminopeptidase from Lactobacillus lactis.
        Appl. Environ. Microbiol. 1980; 40: 876
        • El Soda M.
        • Bergere J.-L.
        • Desmazeaud M.J.
        Detection and localization of peptide hydrolases in Lactobacillus casei.
        J. Dairy Res. 1978; 45: 519
        • El Soda M.
        • Desmazeaud M.J.
        • Bergere J.-L.
        Peptide hydrolases of Lactobacillus casei: isolation and general properties of various peptidase activities.
        J. Dairy Res. 1978; 45: 445
        • El Soda M.
        • Desmazeaud M.J.
        • Le Bars D.
        • Zevaco C.
        Cell-wall-associated proteinases in Lactobacillus casei and Lactobacillus plantarum.
        J. Food Prot. 1986; 49: 361
        • Evans A.C.
        • Hastings E.G.
        • Hart E.B.
        Bacteria concerned in the production of the characteristic flavor in cheese of the Cheddar type.
        J. Agric. Res. 1914; 2: 167
        • Exterkate F.A.
        An introductory study of the proteolytic system of Streptococcus cremoris strain HP.
        Neth. Milk Dairy J. 1975; 29: 303
        • Exterkate F.A.
        Pyrrolidone carboxyl peptidase in Streptococcus cremoris. Dependence on an interaction with membrane components.
        J. Bacteriol. 1977; 129: 1281
        • Exterkate F.A.
        Effect of membrane perturbing treatments on membrane-bound peptidases of Streptococcus cremoris HP.
        J. Dairy Res. 1979; 46: 473
        • Exterkate F.A.
        Membrane-bound peptidases in Streptococcus cremoris.
        Neth. Milk Dairy J. 1981; 35: 328
        • Ezzat N.
        • El Soda M.
        • Bouillanne C.
        • Zevaco C.
        • Blanchard P.
        Cell wall associated proteinases in Lactobacillus helveticus, Lactobacillus bulgaricus, and Lactobacillus lactis.
        Milchwissenschaft. 1985; 40: 140
        • Feagan J.T.
        • Dawson D.J.
        Bacteriology of Cheddar cheese. Some observations on the microflora during maturing.
        Aust J. Dairy Technol. 1959; 14: 59
        • Fedrick I.A.
        • Cromie S.J.
        • Dulley J.R.
        The effects of increased starter populations, added neutral proteinase and elevated temperature storage on Cheddar cheese manufacture and maturation.
        N. Z. J. Dairy Sci. Technol. 1986; 21: 191
        • Franklin J.G.
        • Sharpe M.E.
        The bacterial content of milk used for making Cheddar cheese and its effect on the flora and quality of the cheeses produced.
        1962 Int. Dairy Congress C. 1962; : 305
        • Franklin J.G.
        • Sharpe M.E.
        The incidence of bacteria in cheese milk and Cheddar cheese and their association with flavour.
        J. Dairy Res. 1963; 30: 87
        • Frazier W.C.
        • Whittier E.O.
        Studies on the influence of bacteria on the oxidation-reduction potential of milk.
        J. Bacteriol. 1931; 21: 239
        • Frey J.P.
        • Marth E.H.
        • Johnson M.E.
        • Olson N.F.
        Peptidases and proteases of lactobacilli associated with cheese.
        Milchwissenschaft. 1986; 41: 622
        • Frey J.P.
        • Marth E.H.
        • Johnson M.E.
        • Olson N.F.
        Heat- and freeze-shocking cause changes in peptidase and protease activity of Lactobacillus helveticus.
        Milchwissenschaft. 1986; 41: 681
        • Fryer T.F.
        Microflora of Cheddar cheese and its influence on cheese flavour.
        Rev. Dairy Sci. 1969; 31 (Abstr): 471
        • Fryer T.F.
        Utilization of citrate by lactobacilli isolated from dairy products.
        J. Dairy Res. 1970; 37: 9
        • Fryer T.F.
        The controlled ripening of Cheddar cheese.
        XXI Int. Dairy Congress, Moscow. 1982; 1: 485
        • Gilliland S.E.
        • Speck M.L.
        Frozen concentrated cultures of lactic starter bacteria. A review.
        J. Milk Food Technol. 1974; 37: 107
        • Green M.L.
        • Manning D.J.
        Development of texture and flavour in cheese and other fermented products.
        J. Dairy Res. 1982; 49: 737
        • Grieve P.A.
        • Dulley J.R.
        Use of Streptococcus lactis lac(-) mutants for accelerating Cheddar cheese ripening. 2. Their effect on the rate of proteolysis and flavor development.
        Aust. J. Dairy Technol. 1983; 38: 49
        • Guirard B.
        The amino acid requirements of organisms for growth.
        in: Handbook of microbiology. Vol. IV. CRC Press, Cleveland, OH1974: 1
        • Hickey M.W.
        • Hillier A.J.
        • Jago G.R.
        Peptidase activities in lactobacilli.
        Aust. J. Dairy Technol. 1983; 38: 118
        • Hofer F.
        Transfer of lactose-fermenting ability in Lactobacillus lactis.
        N. Z. J. Dairy Sci. Technol. 1985; 20: 179
        • Ishiwa H.
        • Iwata S.
        Drug resistance plasmids in Lactobacillus fermentum.
        J. Gen. Appl. Microbiol. 1980; 26: 71
        • Iwata M.
        • Mada M.
        • Ishiwa H.
        Protoplast fusion of Lactobacillus fermentum.
        Appl. Environ. Microbiol. 1980; 52: 392
        • Johns C.K.
        • Cole S.E.
        Lactobacilli in Cheddar cheese.
        J. Dairy Res. 1959; 26: 157
        • Kaminogawa S.
        • Ninomiya T.
        • Yamauchi K.
        Aminopeptidase profiles of lactic streptococci.
        J. Dairy Sci. 1984; 67: 2483
        • Klaenhammer T.
        A general method for plasmid isolation in lactobacilli.
        Curr. Microbiol. 1984; 10: 23
        • Klaenhammer T.
        • Sutherland S.M.
        Detection of plasmid deoxyribonucleic acid in an isolate of Lactobacillus acidophilus.
        Appl. Environ. Microbiol. 1980; 39: 671
        • Kristoffersen T.
        Interrelationships of flavor and chemical changes in cheese.
        J. Dairy Sci. 1967; 50: 279
        • Kristoffersen T.
        • Mikolajcik E.M.
        • Gould I.A.
        Cheddar cheese flavor. IV. Directed and accelerated ripening process.
        J. Dairy Sci. 1967; 50: 292
        • Kristoffersen T.
        • Nelsoa F.E.
        Degradation of amino acids by Lactobacillus casei and some factors influencing deamination of serine.
        Appl. Microbiol. 1955; 3: 268
        • Lane C.B.
        • Hammer B.W.
        Bacteriology of cheese. II. Effect of Lactobacillus casei on the nitrogenous decomposition and flavor development in Cheddar cheese made from pasteurized milk.
        Iowa State Agric. Exp. Stn. Bull. 1939; : 190
        • Law B.A.
        Flavor compounds in cheese.
        Perfumer Flavorist. 1982; 7: 9
        • Law B.A.
        Flavor development in cheeses. Chapter 7.
        in: Davies F.L. Law B.A. Advances in the microbiology and biochemistry of cheese and fermented milk. Elsevier Appl. Sci. Publ., London, Engl.1984
        • Law B.A.
        • Castanon M.
        • Sharpe M.E.
        The effect of non-starter bacteria on flavor development in Cheddar cheese.
        J. Dairy Res. 1976; 43: 117
        • Law B.A.
        • Hosking Z.D.
        • Chapman H.R.
        The effect of some manufacturing conditions on the development of flavor in Cheddar cheese.
        J. Soc. Dairy Technol. 1979; 32: 87
        • Law B.A.
        • Kolstad J.
        Proteolytic systems in lactic acid bacteria. Antonie Leeuwenhoek.
        J. Microbiol. Serol. 1983; 49: 225
        • Law B.A.
        • Sharpe M.E.
        Formation of methanethiol by bacteria isolated from raw milk and Cheddar cheese.
        J. Dairy Res. 1978; 45: 267
        • Law B.A.
        • Sharpe M.E.
        • Reiter B.
        The release of intracellular dipeptidase from starter streptococci during Cheddar cheese ripening.
        J. Dairy Res. 1974; 41: 137
        • Law B.A.
        • Wigmore A.S.
        Accelerated cheese ripening with food grade proteinases.
        J. Dairy Res. 1982; 49: 137
        • Law B.A.
        • Wigmore A.S.
        Microbial proteinases as agents for accelerated cheese ripening.
        J. Soc. Dairy Technol. 1982; 35: 75
        • Law B.A.
        • Wigmore A.S.
        Accelerated ripening of Cheddar cheese with a commercial proteinase and intracellular enzymes from starter streptococci.
        J. Dairy Res. 1983; 50: 519
        • Leach F.R.
        • Snell E.E.
        The absorption of grycine and alanine and their peptides by Lactobacillus casei.
        J. Biol. Chem. 1960; 235: 3523
        • Lloyd G.T.
        • Horwood J.F.
        • Barlow I.
        The effect of yogurt culture YB on the flavor and maturation of Cheddar cheese.
        Aust. J. Dairy Technol. 1980; 35: 137
        • Mabbit L.A.
        • Chapman H.R.
        • Berridge N.J.
        Experiments in cheese mating without starter.
        J. Dairy Res. 1955; 22: 365
        • Mabbit L.A.
        • Zielinska M.
        Acetate agar for isolation of lactobacilli.
        J. Appl. Bacteriol. 1956; 19: 95
        • Marth E.H.
        Microbiological and chemical aspects of Cheddar cheese ripening.
        A review. J. Dairy Sci. 1963; 48: 869
        • McDonald V.R.
        Rates of ripening.
        Dep. Agric. S. Austr. 1945; 49 ([As referenced by (80).]): 69
        • McKay L.L.
        Functional properties of plasmids in lactic streptococci. Antonie Leeuwenhoek.
        J. Microbiol. Serol. 1983; 49: 259
        • Mills O.E.
        • Thomas T.D.
        Release of cell wall-associated proteinase(s) from lactic streptococci.
        N. Z. J. Dairy Sci. Technol. 1978; 13: 209
        • Mills O.E.
        • Thomas T.D.
        Bitterness development in Cheddar cheese: effect of the level of starter proteinase.
        N. Z. J. Dairy Sci. Technol. 1980; 15: 131
        • Mills O.E.
        • Thomas T.D.
        Nitrogen sources for growth of lactic streptococci in milk.
        N. Z. J. Dairy Sci. Technol. 1981; 16: 43
        • Morishita T.
        • Degnchi Y.
        • Yajima M.
        • Sakuria T.
        • Yura T.
        Multiple nutritional requirements of lactobacilli. Genetic lesions affecting amino acid biosynthetic pathways.
        J. Bacteriol. 1981; 148: 64
        • Morishita T.
        • Fukada T.
        • Shirota M.
        • Yura T.
        Genetic basis of nutritional requirements in Lactobacillus casei.
        J Bacteriol. 1974; 120: 1078
        • Mou L.
        • Sullivan J.J.
        • Jago G.R.
        Peptidase activities in Group N streptococci.
        J. Dairy Res. 1975; 42: 147
        • Nath K.R.
        • Ledford R.A.
        Growth response of Lactobacillus casei var. casei to proteolysis products in cheese during ripening.
        J. Dairy Sci. 1973; 56: 710
        • National Dairy Council
        Newer knowledge of cheese and other cheese products.
        Natl. Dairy Counc., Rosemont, IL1983
        • Naylor J.
        A note on the use of Rogosa and modified Rogosa media for enumeration and culture of lactobacilli.
        J. Appl. Bacteriol. 1956; 19: 102
        • Naylor J.
        • Sharpe M.E.
        Lactobacilli in Cheddar cheese. I. The use of selective media for isolation and of serological typing for identification.
        J. Dairy Res. 1958; 25: 92
        • Naylor J.
        • Sharpe M.E.
        Lactobacilli in Cheddar cheese. II. Duplicate cheeses.
        J. Dairy Res. 1958; 25: 421
        • Naylor J.
        • Sharpe M.E.
        Lactobacilli in Cheddar cheese. III. The source of lactobacilli in cheese.
        J. Dairy Res. 1958; 25: 431
        • Perry K.D.
        • McGillivray
        The manufacture of “normal” and “starter-free” Cheddar cheese under controlled bacteriological conditions.
        J. Dairy Res. 1964; 31: 155
        • Peters V.J.
        • Prescott J.M.
        • Snell E.E.
        Peptides and bacterial growth. IV. Histidine peptides as growth factors for Lactobacillus delbrueckii.
        J. Biol. Chem. 1953; 202: 521
        • Pettersson H.E.
        • Sjöström G.
        Accelerated cheese ripening: a method for increasing the number of lactic starter bacteria in cheese without detrimental effect to the cheese-making process, and its effect on cheese ripening.
        J. Dairy Res. 1975; 42: 313
        • Reiter B.
        • Fryer T.F.
        • Sharpe M.E.
        A method of maintaining a reference flora of constant bacteriological composition.
        J. Dairy Res. 1965; 32: 89
        • Reiter B.
        • Sharpe M.E.
        Relationship of the microflora to the flavour of Cheddar cheese.
        J. Appl. Bacteriol. 1971; 34: 63
        • Robertson P.S.
        • Perry K.D.
        Enhancement of the flavor of Cheddar cheese by adding a strain of Micrococcus to the cheese milk.
        J. Dairy Res. 1961; 28: 245
        • Rogosa M.
        • Mitchell J.A.
        • Wiseman R.T.
        A selective medium for the isolation and enumeration of oral and fecal lactobacilli.
        J. Bacteriol. 1951; 62: 132
        • Schmidt R.H.
        • Morris H.A.
        • McKay L.L.
        Cellular location and characteristics of peptidase enzymes in lactic streptococci.
        J. Dairy Sci. 1977; 60: 710
        • Searles M.A.
        • Argyle P.J.
        • Chandan R.C.
        • Gordon J.F.
        Lipolytic and proteolytic activities of lactic cultures.
        XVIII Int. Dairy Congr. 1970; 1E: 111
        • Sharpe M.E.
        • Franklin J.G.
        Production of hydrogen sulfide by lactobacilli with special reference to strains isolated from Cheddar cheese.
        VIII Int. Congr. Microbiol. 1962; B11: 3
        • Sherwood I.R.
        Lactic bacteria in relation to cheese flavour.
        I. J. Dairy Res. 1937; 8: 224
        • Sherwood I.R.
        The bacterial flora of New Zealand Cheddar cheese.
        J. Dairy Res. 1939; 10: 426
        • Sherwood I.R.
        Lactic acid bacteria in relation to cheese flavour. H. Observations on the inoculation of the milk employed in cheese manufacture with lactobacilli.
        J. Dairy Res. 1939; 10: 449
        • Shrago A.W.
        • Chassy B.M.
        • Dobrogosz W.J.
        Conjugal plasmid transfer (pAMβl) in Lactobacillus plantarum.
        Appl. Environ. Microbiol. 1986; 52: 574
        • Smith K.N.
        • Johns C.K.
        • Elliot J.A.
        Relation between bacterial content of milk and the flavor score of Cheddar cheese.
        1956 Int. Dairy Congr. 1956; 2: 546
        • Sood V.K.
        • Kosikowski F.V.
        Ripening changes and flavor development in microbial enzyme treated Cheddar cheese slurries.
        J. Food Sci. 1979; 44: 1690
        • Sorhaug T.
        • Kolstad J.
        Peptide hydrolases of Group N streptococci. Review of research at the Dairy Research Institute, ÅS-NLH, Norway.
        Neth. Milk Dairy J. 1981; 35: 338
        • Sorhaug T.
        • Solberg P.
        Fractionation of dipeptidase activities at Streptococcus lactis and dipeptidase specificity of some lactic acid bacteria.
        Appl. Microbiol. 1973; 25: 388
        • Thomas T.D.
        Oxidative activity of bacteria from Cheddar cheese.
        N. Z. J. Dairy Sci. Technol. 1986; 21: 37
        • Thomas T.D.
        Acetate production from lactate and citrate by non-starter bacteria in Cheddar cheese.
        N. Z. J. Dairy Sci. Technol. 1987; 22: 25
        • Thomas T.D.
        Cannibalism among bacteria found in cheese.
        N. Z. J. Dairy Sci. Technol. 1987; 22: 215
        • Thomas T.D.
        • Jarvis B.D.
        • Skipper N.A.
        Localization of proteinase(s) near the cell surface of Streptococcus lactis.
        J. Bacteriol. 1974; 118: 329
        • Thomas T.D.
        • Mills O.E.
        Proteolytic enzymes of starter bacteria.
        Neth. Milk Dairy J. 1981; 35: 255
        • Tittsler R.P.
        • Sanders G.P.
        • Lochry H.R.
        • Sager O.S.
        The influence of various lactobacilli and certain streptococci on the chemical changes, flavor development and quality of Cheddar cheese.
        J. Dairy Sci. 1948; 31: 716
        • Tittsler R.P.
        • Sanders G.P.
        • Walter H.E.
        • Geib D.S.
        • Sager O.S.
        • Lochry H.R.
        The effects of lactobacilli on the quality of Cheddar cheese made from pasteurized milk.
        J. Bacteriol. 1947; 54: 276
      1. United States Department of Agriculture, Economic Research Service. 1985. Food consumption, prices and expenditures, 1965-1985. Stat Bull. No. 749:17.

        • Webster F.
        • Frye B.
        Cheese aging and consumer preference.
        Dairy Field. 1987; 170: 50
        • West C.A.
        • Warner P.J.
        Plasmid profiles and transfer of plasmid-encoded antibiotic resistance in Lactobacillus plantarum.
        Appl. Environ. Microbiol. 1985; 50: 1319
        • Yates A.R.
        • Irvine O.R.
        • Cunningham J.D.
        Chromatograpnic studies on proteolytic bacteria in their relationship to flavor development in Cheddar cheese.
        Can. J. Agric. Sci. 1955; 35: 337