Advertisement
Article| Volume 79, ISSUE 5, P775-781, May 1996

Download started.

Ok

Improvement of Diacetyl Production by Lactococcus lactis ssp. lactis CNRZ 483 Through Oxygen Control

      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      This study illustrated the effect of controlled oxygenation on diacetyl production by citrate-utilizing Lactococcus lactis ssp. lactis CNRZ 483. Effects of soluble oxygen concentrations at 21 and 50% of the medium saturation and pressurization of the reactor under 1 and 2 atm (atmospheres) of oxygen were tested. Oxygen had a slightly negative effect on the growth of L. lactis ssp. lactis CNRZ 483. In contrast, oxygen had a substantial effect on diacetyl production. Under nitrogen, the maximal concentration of diacetyl in the medium was 0.015 mM; diacetyl maxima were 0.13 and 0.26 mM when soluble oxygen concentrations were 21 and 5096, respectively. Diacetyl production reached a maximum of 0.39 and 0.45 mM when oxygen pressures of the culture were 1 and 2 atm, respectively. The effect of oxygen on lactate dehydrogenase activity and on chemical decarboxylation of α-acetolactate explained the higher diacetyl production.

      Key words

      Abbreviation key:

      ALS (α-acetolactate synthase), Cit+ (citrate-utilizing), LDH (lactate dehydrogenase)

      References

        • Anders R.F.
        • Hogg D.M.
        • Jago G.R.
        Formation of hydrogen peroxide by group N streptococci and its effects on their growth and metabolism.
        Appl. Microbiol. 1970; 19: 608
        • Bassit N.
        • Boquien C.Y.
        • Picque D.
        • Corrieu G.
        Effect of initial oxygen concentration on diacetyl and acetoin production by Lactococcus lactis ssp. lactis biovar diacetylactis.
        Appl. Environ. Microbiol. 1993; 59: 126
        • Bradford M.M.
        A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principal of protein dye-binding.
        Anal. Biochem. 1976; 72: 248
        • Bruhn J.C.
        • Collins E.B.
        Reduced nicotinamide adenine dinucleotide oxidase of Streptococcus diacetylactis.
        J. Dairy Sci. 1970; 53: 857
        • Cogan T.M.
        Constitutive nature of the enzymes of citrate metabolism in Streptococcus lactis ssp. diacetylactis.
        J. Dairy Res. 1981; 48: 489
        • Cogan T.M.
        Mesophilic starters.
        Les Laits Fermentes. Actualite de la Recherche. John Libbey Eurotexte, Montrouge, France1989 (Page 19)
        • Condon S.
        Response of lactic acid bacteria to oxygen.
        FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Rev. 1987; 46: 269
        • Corrieu G.
        • Pique D.
        • Perret B.
        • Quemener P.
        CINAC. Systeme automatic de suivi des cultures.
        Process. 1992; 1068: 24
        • Drinan D.F.
        • Tobin S.
        • Cogan T.M.
        Citric acid metabolism in hetero and homofermentative lactic acid bacteria.
        Appl. Environ. Microbiol. 1976; 31: 481
        • Harvey R.J.
        • Collins E.B.
        Citrate transport system of Streptococcus diacetylactis.
        J. Bacteriol. 1962; 83: 1005
        • Hugenholtz J.
        • Starrenburg M.J.C.
        Diacetyl production by different strains of Lactococcus lactis ssp. diacetylactis and Leuconostoc spp.
        Appl. Microbiol. Biotechnol. 1992; 38: 17
        • Kaneko T.
        • Takahashi M.
        • Suzuki H.
        Acetoin fermentation by citrate-positive Lactococcus lactis ssp. lactis 3022 grown aerobically in the presence of hemin or Cu2+.
        Appl. Environ. Microbiol. 1990; 56: 2644
        • Kaneko T.
        • Watanabe Y.
        • Suzuki H.
        Enhancement of diacetyl production by a diacetyl-resistant mutant of citrate-positive Lactococcus lactis ssp. lactis 3022 and by aerobic condition of growth.
        J. Dairy Sci. 1990; 73: 291
        • Kaneko T.
        • Watanabe Y.
        • Suzuki H.
        Differences between Lactobacillus casei ssp. casei 2206 and citrate-positive Lactococcus lactis ssp. lactis 3022 in the characteristics of diacetyl production.
        Appl. Environ. Microbiol. 1991; 57: 3040
        • Kempler G.M.
        • McKay L.L.
        Characterization of plasmid desoxyribonucleic acid in Streptococcus lactis ssp. diacetylactis: evidence for plasmid-linked citrate utilization.
        Appl. Environ. Microbiol. 1979; 37: 316
        • Lebreton J.D.
        • Miller C.
        Courbes de réponse crois- santes avec point d’inflexion.
        Modèles Dynamiques Deterministes en Biologie, Masson, Paris, France1982 (Page 162)
        • Libudzisz Z.
        • Galewska E.
        Citrate metabolism in Lactococcus lactis ssp. lactis biovar diacetylactis.
        Die Nahrung. 1991; 35: 611
        • Monnet C.
        • Schmitt P.
        • Divies C.
        Diacetyl production in milk by an acetolactic acid accumulating strain of Lactococcus lactis ssp. lactis biovar diacetylactis.
        J. Dairy Sci. 1994; 77: 2916
        • Ochi H.
        • Takahashi M.
        • Kaneko T.
        • Suzuki H.
        • Tanaka H.
        Diacetyl production by co-metabolised citrate-positive Lactococcus lactis ssp. lactis 3022 and homogenized bovine liver in alginate fibers with double gel layers.
        Biotechnol. Lett. 1991; 13: 505
        • Petit C.
        • Vilchez F.
        • Marczak R.
        Formation and stabilization of diacetyl and acetoin concentration in fully grown cultures of Streptococcus lactis ssp. diacetylactis.
        Biotechnol. Lett. 1989; 11: 53
        • Petit C.
        • Vilchez F.
        • Marczak R.
        Influence of citrate on the diacetyl and acetoin production by fully grown cells of Streptococcus lactis ssp. diacetylactis.
        Curr. Microbiol. 1989; 19: 319
        • Piard J.C.
        • Desmazeaud M.
        Inhibiting factors produced by lactic acid bacteria. Oxygen metabolites and catabolism products.
        Lait. 1991; 71: 525
        • Smart J.B.
        • Thomas T.D.
        Effect of oxygen on lactose metabolism in lactic streptococci.
        Appl. Environ. Microbiol. 1987; 53: 533
        • Snoep L.J.
        • Teixeira de Mattos M.J.
        • Starrenburg M.C.
        • Hugenholtz J.
        Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and acetolactate synthase of Lactococcus lactis subsp. lactis biovar diacetylactis.
        J. Bacteriol. 1992; 174: 4838
        • Speckman R.A.
        • Collins E.B.
        Diacetyl biosynthesis in Streptococcus diacetylactis and Leuconostoc citrouorum.
        J. Bacteriol. 1968; 95: 174
        • Stadhouders J.
        Dairy starter cultures.
        Milchwissenschaft. 1974; 29: 329
        • Takahashi M.
        • Ochi H.
        • Suzuki H.
        • Tanaka H.
        Diacetyl production by immobilised citrate-positive lactis ssp. Lactococus lactis 3022 in the fibrous Ca alginate gel.
        Biotechnol. Lett. 1990; 12: 569
        • Terzaghi B.E.
        • Sandine W.E.
        Improved medium for lactic steptococci and their bacteriophage.
        Appl. Microbiol. 1975; 29: 807
        • Thomas T.D.
        Regulation of lactose fermentation in group N streptococci.
        Appl. Environ. Microbiol. 1976; 32: 474
        • Verhue W.M.
        • Tjan F.S.B.
        Study of the citrate metabolism of Lactococcus lactis ssp. lactis biovar diacetylactis by means of C13 nuclear magnetic resonance.
        Appl. Environ. Microbiol. 1991; 57: 3371
        • Veringa H.A.
        • Verhue E.H.
        • Stadhouders J.
        Determination of diacetyl in dairy products containing acetolactate acid.
        Neth. Milk Dairy J. 1984; 38: 251
        • Walsh B.
        • Cogan T.M.
        Further studies on the estimation of diacetyl by the methods of Prill and Hammer and Owades and Jakovac.
        J. Dairy Res. 1974; 41: 31