DAIRY FOODS

Characterization of Phosphate Sites in Native Ovine, Caprine, and Bovine Casein Micelles and Their Caseinomacropeptides: A Solid-State Phosphorus-31 Nuclear Magnetic Resonance and Sequence and Mass Spectrometric Study

L. K. RASMUSSEN,1,2 E. S. SØRENSEN,2 T. E. PETERSEN,2 N. C. NIELSEN,3 and J. K. THOMSEN3
University of Aarhus, DK-8000 Aarhus, Denmark

ABSTRACT

The phosphate sites in native ovine, caprine, and bovine casein micelles have been analyzed using sequence analysis, mass spectrometric analysis, and solid-state 31P nuclear magnetic resonance spectroscopy. Using a combination of S-ethylcysteine derivatization, sequence analysis, and mass spectrometric analysis, the phosphorylation sites of ovine (SerP151 and SerP168), caprine (SerP151 and SerP168), and bovine (SerP149) caseinomacropeptides have been localized. Various solid-state 31P methods using magic angle spinning have been applied to ascertain the local structure and dynamics of the phosphorylated serine residues and the inorganic calcium phosphates within the micelles. Contributions from the phosphorylated serine residues of κ-CN, located in the C-terminal portion of the molecule, to the mobile constituents of the micelles were assigned by comparison with 31P nuclear magnetic resonance spectra of purified caseinomacropeptides from the various species in the dissolved state. Comparison of the 31P magic angle spinning nuclear magnetic resonance spectra of ovine, caprine, and bovine casein micelles indicates that the micelles from these species are very similar but not identical.

(Key words: magic angle spinning nuclear magnetic resonance, casein micelles, phosphorylation, κ-casein)

Abbreviation key: CMP = caseinomacropeptide, HAP = hydroxyapatite, MAS = magic angle spinning, NMR = nuclear magnetic resonance, PTH = phenylthiohydantoin.

INTRODUCTION

Despite intensive use of numerous techniques, the exact quaternary structure and dynamic behavior of casein micelles remain largely unresolved. However, experimental results from studies utilizing electron microscopy (25), small angle X-ray and neutron scattering (10, 27), and liquid-state nuclear magnetic resonance (NMR) spectroscopy (8, 22, 36) have been interpreted in terms of a commonly accepted sub-micellar model. In this model, κ-CN is primarily located at the micellar surface, and the flexible C-terminal caseinomacropeptide (CMP) protrudes into the solution as “hairs” (6, 23). In addition to the stabilizing effect induced by the κ-CN hairs and potential hydrophobic and electrostatic interactions between proteins, this model involves a calcium phosphate phase, often referred to as colloidal calcium phosphate. Through interactions with phosphorylated serine residues, colloidal calcium phosphate is regarded as fundamental for the integrity and stability of the casein micelle.

Most results concerning the dynamic behavior of the casein micelles and the colloid formation with inorganic calcium phosphates have originated from experiments using liquid-state NMR. This technique, however, has certain limitations when used to investigate the overall structure and dynamics of casein micelles. Motion is restricted within these large colloidal particles, ranging in size from 20 to 600 nm (21), which implies that this method provides information only on mobile micellar components, and resonances from the immobile components within the particles are not detected. To remedy this problem, bovine casein micelles have recently been investigated using solid-state NMR spectroscopy, which is a method well suited for investigating the structure and dynamics of immobilized or partly immobilized matter (33). Thus, application of various 31P NMR methods using magic angle spinning (MAS) has proved useful to detect and discriminate signals from...
mobile and immobile phosphates as well as organic and inorganic phosphates in native casein micelles. In support of the “hairy” submicellar model, κ-CN exhibited a high degree of freedom of motion, but a major fraction of the SerP residues from the other caseins appeared to be immobilized, most likely by interactions with calcium phosphates or by other interactions associated with formation of micelles. Furthermore, comparison with 31P MAS NMR spectra for a series of inorganic calcium phosphates revealed that the micellar inorganic calcium phosphates exhibit structural similarities to hydroxyapatite (HAP).

In this study, we have employed sequence and mass spectrometric analysis as well as solid-state 31P MAS NMR spectroscopy to perform a comparative examination of the phosphate sites in ovine, caprine, and bovine caseins. Mercier (12) has previously shown that bovine κ-CN contains at least one phosphorylated serine residue (SerP149) in the caseinomacropeptide region. Two phosphorylation sites (SerP151 and SerP168) have been localized in caprine CMP (13), and, because of the sequence homology between sheep and goat, ovine CMP also possibly contains two SerP in the corresponding positions. To attain further knowledge of the specific phosphorylation sites of caprine, ovine, and bovine CMP, we have applied S-ethylcysteine derivatization, sequence analysis, and mass spectrometric analysis to localize these sites. This strategy has recently been applied successfully in studies of the milk proteins PP3 (29) and osteopontin (28). To characterize and compare the structure and dynamics associated with the phosphate sites of native micelles from the three species, we performed a series of 31P single-pulse, cross-polarization (18), and spin-echo MAS experiments. Furthermore, to support our assignment of 31P resonances in the individual 31P MAS NMR spectra to κ-CN, CMP from the different species were purified and analyzed by liquid-state 31P NMR.

MATERIALS AND METHODS

Materials

Rennet extract containing approximately 30% pepsin was from Chr. Hansen Laboratories (Copenhagen, Denmark), and aprotinin was from Merck (Damstadt, Germany). Superdex 75 HR 10/30 was from Pharmacia (Uppsala, Sweden). Endoproteinase Glu-C (EC 3.4.21.19) and thermolysin (EC 3.4.24.2) were obtained from Boehringer Mannheim (Mannheim, Germany) and Sigma Chemical Co. (St. Louis, MO), respectively. Vydac C18 (10 μm) was from The Separations Group (Hesperia, CA). Reagents used for sequencing were from Applied Biosystems (Foster City, CA). All other chemicals used were of analytical grade. Caprine milk was provided by The National Institute of Animal Science (Foulum, Denmark) and from Òrums soign udviklingsmejeri (Hjallerup, Denmark). Ovine and bovine milks (Black and White Danish Dairy Cattle, heterozygous for κ-CN) were delivered from Aggersborggaarda (Lægøstør, Denmark) and MD Foods Research and Development Center (Brabrand, Denmark), respectively.

Preparation of Casein Micelles and CMP

Raw milk samples were skimmed (2600 × g for 10 min at 4°C), and native casein micelles were prepared by ultracentrifugation as described (33). Briefly, aprotinin (final concentration 3 mg/ml) was added to prevent plasmin-induced proteolysis. Native casein micelles were prepared by centrifugation at 120,000 × g for 1.5 h at 5°C in a preparative ultracentrifuge (Beckman L8-M; Beckman Instruments, Inc., Fullerton, CA). The pellets were resuspended in water and centrifuged. Prior to the NMR experiments, aprotinin was added to the casein micelles (pellets) and packed in the rotor. The CMP was purified from acid-precipitated whole casein treated with rennet, followed by TCA precipitation as described (11). The filtrates were dialyzed against 50 mM ammonium bicarbonate, lyophilized, and applied to a Superdex 75 HR 10/30 column eluted with 50 mM ammonium bicarbonate at a flow rate of 0.5 ml/min. Peptides were detected in the effluent by recording the absorbance at 226 nm. The identity of the purified CMP from the various species was confirmed by amino acid sequence analysis performed by automated Edman degradation on a model 477 sequencer (Applied Biosystems) with on-line phenylthiohydantoin (PTH) analysis (Applied Biosystems 120A HPLC).

NMR Spectroscopy

All experiments were performed at ambient temperatures on a Varian XL-300 spectrometer (Varian Associates, Inc., Palo Alto, CA; operating at 121.4 MHz for 31P) equipped with a home-built MAS probe (7) using 7-mm (outer diameter), partially stabilized zirconia (220-μl volume) rotors with spinning speeds of ca. 5 kHz for solid samples. The experiments, which were performed essentially as described (33), used radio frequency field strengths of 40 kHz for 1H pulses and decoupling and 30 kHz for 31P pulses and 1H-31P Hartmann-Hahn match in cross-polarization experiments. The experimental details are given in
PHOSPHATE SITES IN CASEIN MICELLES

Journal of Dairy Science Vol. 80, No. 4, 1997

Figure 1. Reverse-phase HPLC separation of peptides obtained from caseinomacropeptides (CMP) by digestion with endoproteinase Glu-C of ovine CMP (A), caprine CMP (B), and bovine CMP (C). Peptides were eluted with a gradient of 80% acetonitrile in 0.1% trifluoroacetic acid (TFA; dotted line) on a (10-m
\text{m}) Vydac C18 column (4 \times 250 \text{ mm}; The Separations Group, Hesperia, CA). The column was operated at 40°C with a flow rate of 0.85 ml/min. Peptides were detected in the effluent by recording the absorbance at 226 nm (A 226; solid line). Fractions containing phosphate (B1 to B4, C1 to C3, and O1 to O3) were identified by amino acid analysis (see Materials and Methods).

RESULTS AND DISCUSSION

Localization of Phosphorylation Sites in Ovine, Caprine, and Bovine CMP

The HPLC chromatograms of the endoproteinase Glu-C digests from purified ovine, caprine, and bovine CMP are presented in Figure 1. To reveal the

...
Table 1. Localization of phosphorylation sites in bovine, ovine, and caprine caseinomacropeptides by sequence analysis and mass spectrometric analysis.

<table>
<thead>
<tr>
<th>Peak</th>
<th>Observed sequence</th>
<th>Molecular mass</th>
<th>Peptide identification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Observed</td>
</tr>
<tr>
<td>Bovine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>A148–E151</td>
<td>482.4</td>
<td>ASPE6</td>
</tr>
<tr>
<td>B2</td>
<td>A138–E147</td>
<td>1483.5</td>
<td>AVESTVATLEAPE6</td>
</tr>
<tr>
<td>B3</td>
<td>S141–E151</td>
<td>1228.2</td>
<td>STVATLED</td>
</tr>
<tr>
<td>B4</td>
<td>L146–P151</td>
<td>768.7</td>
<td>LEDP</td>
</tr>
<tr>
<td>Ovine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>T161–V171</td>
<td>1230.2</td>
<td>TNTAQVTSTEV</td>
</tr>
<tr>
<td>O2</td>
<td>A140–E153</td>
<td>1481.5</td>
<td>AVNAVDPNASSE</td>
</tr>
<tr>
<td>O3</td>
<td>A140–P159</td>
<td>2137.2</td>
<td>AVNAVDPNASSE</td>
</tr>
<tr>
<td>Caprine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>T161–V171</td>
<td>1230.2</td>
<td>TNTAQVTSTEV</td>
</tr>
<tr>
<td>C2</td>
<td>A140–A150</td>
<td>1525.5</td>
<td>AVNAVDPNASSE</td>
</tr>
<tr>
<td>C3</td>
<td>P148–E153</td>
<td>698.6</td>
<td>PEASSE</td>
</tr>
<tr>
<td>C3</td>
<td>A140–D146</td>
<td>2171.2</td>
<td>AVNAVDPNASSE</td>
</tr>
</tbody>
</table>

1Peak numbers are as shown in Figure 1.
2Only phosphopeptides in the respective peaks are presented.
3Calculated mean masses including one phosphorylated serine residue.
4Identified peptide from caseinomacropeptide. Phosphorylated serine residues are shown in bold and italics.
5No ions corresponding to the calculated mass could be observed in the mass spectra.
6Derived from κ-CN variant B.
7Derived from κ-CN variant A.
threonine residues were seldom phosphorylated in the caseins (12), Ser$_{127}$ was the only other potential phosphorylation site. However, no peptide containing Ser$_{127}$ was detected by phosphate analysis, and sequence analysis of bovine CMP showed an expected yield of PTH-Ser in the cycle corresponding to Ser$_{127}$, thereby confirming that this serine was not phosphorylated. We have recently discovered the phosphorylation of serine residues located in another sequence motif, Ser-X-X-Glu (30). This motif corresponds to the recognition sequence of casein kinase II. Analysis of the bovine CMP shows the presence of one serine residue (Ser-155) located in a recognition motif for casein kinase II. Mass spectrometry and sequence analysis of the peptide Ala$_{148}$ to Glu$_{158}$ showed that Ser$_{155}$ was not phosphorylated in bovine CMP (Table 1). Only Ser$_{149}$ in bovine CMP, purified from bulk milk containing both the κ-CN A and B variants, was found conclusively to be phosphorylated. The existence of other reported phosphorylation sites could be ascribed to microheterogeneity in the level of phosphorylation and glycosylation that was dependent on the lactation stage and season or simply because of differences between individuals.

Solid-State 31P MAS NMR of Native Ovine, Caprine, and Bovine Casein Micelles

A series of different 31P MAS NMR spectra of ovine, caprine, and bovine casein micelles is shown in Figure 3 along with the spectra of bovine casein micelles for comparison. The single-pulse (Figure 3A), spin-echo (Figure 3B), and cross-polarization (Figure 3C) MAS NMR spectra display resonances from all phosphate groups, mobile phosphate groups, and immobile phosphate groups in the casein micelle, respectively.

The 31P MAS spectrum of bovine casein micelles (Figure 3A, right column) shows a narrow resonance at 1.5 ppm and a somewhat broader resonance at 3.0 ppm, which both reside on a very broad resonance (appears as a hump) centered at ca. 2 to 3 ppm. The two resolved resonances and the hump originate from mobile and immobile micellar constituents, respectively, as evidenced by the spin-echo (Figure 3B, right column) and cross-polarization (Figure 3C, right column) MAS spectra probing these components selectively. The 31P MAS spectra were deconvoluted (shown below the experimental spectra) and assigned using this spectral information and comparison with 31P MAS spectra of α_{s1}-CN, α_{s2}-CN, β-CN, CMP and a series of inorganic calcium phosphates as well as mineralized bone tissue (33). The resonance at 1.5 ppm has been assigned to mobile SerP of κ-CN located in the C-terminal part of the molecule, and the resonance at 3.0 ppm has been assigned to micellar inorganic calcium phosphate in a mobile state exhibiting structural similarities to HAP. This interpretation supports a model in which κ-CN is mainly located at the micellar surface, and the CMP protrudes into the solutions as “hairs” (6, 23). In our earlier study (33), the resonance at 1.5 ppm appeared as two narrow resonances. However, in later experiments, only a single peak was obtained. The reason for this variation is at present not clear. The three broad resonances at 1.6, 2.9, and 3.7 ppm of the deconvolution, which together formed the broad hump, were assigned to immobilized organic SerP residues, primarily from α_{s1}-CN, α_{s2}-CN, and β-CN (1.6 ppm) and immobile inorganic phosphates (2.9 and 3.7 ppm). Casein micelles are affected by pH and temperature in a number of ways (3, 24). The pH of the casein micelle suspension was in the range 6.5 to 6.8, thus corresponding to that of normal milk. As the temperature was lowered to 4°C (normal storage temperature), the caseins dissociated from the casein micelles. To examine the influence of temperature on our results, we obtained spectra of 1) bovine bulk milk stored at 4°C and ultracentrifuged at 20°C and 2) fresh bovine milk to which aprotinin (final concentration 3 mg/L) was added immediately after milking and then stored at room temperature for 2 h prior to ultracentrifugation at 20°C. Deconvolutions of the im-

Figure 2. Comparison of the phosphorylation sites in ovine, caprine, and bovine caseinomacropeptides (CMP). The deduced amino acid sequences of bovine variant A (26), ovine (5), and caprine (2) CMP were aligned using the PileUp program from the GCG program package (20) and presented using Alscript (1). Boxes indicate identical residues in all three species, and introduced gaps are indicated by dots. Identified phosphorylated serines in bovine CMP (14), caprine CMP (13), and ovine CMP (this study) are in boldface type.

<table>
<thead>
<tr>
<th>Species</th>
<th>Sequence of Bovine CMP (26)</th>
<th>Sequence of Ovine CMP (5)</th>
<th>Sequence of Caprine CMP (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine</td>
<td>MAIPKKKQDRKETVPAINTIASLLETVHSPTEAIVNVTNDPCLSNERTAANVTSLTS</td>
<td>MAIPKKKQDRKETVPAINTIASLLETVHSPTEAIVNVTNDPCLSNERTAANVTSLTS</td>
<td>MAIPKKKQDRKETVPAINTIASLLETVHSPTEAIVNVTNDPCLSNERTAANVTSLTS</td>
</tr>
<tr>
<td>Ovine</td>
<td>MAIPKKKQDRKETVPAINTIASLLETVHSPTEAIVNVTNDPCLSNERTAANVTSLTS</td>
<td>MAIPKKKQDRKETVPAINTIASLLETVHSPTEAIVNVTNDPCLSNERTAANVTSLTS</td>
<td>MAIPKKKQDRKETVPAINTIASLLETVHSPTEAIVNVTNDPCLSNERTAANVTSLTS</td>
</tr>
<tr>
<td>Caprine</td>
<td>MAIPKKKQDRKETVPAINTIASLLETVHSPTEAIVNVTNDPCLSNERTAANVTSLTS</td>
<td>MAIPKKKQDRKETVPAINTIASLLETVHSPTEAIVNVTNDPCLSNERTAANVTSLTS</td>
<td>MAIPKKKQDRKETVPAINTIASLLETVHSPTEAIVNVTNDPCLSNERTAANVTSLTS</td>
</tr>
</tbody>
</table>

Figure 3 along with the spectra of bovine casein micelles for comparison. The single-pulse (Figure 3A), spin-echo (Figure 3B), and cross-polarization (Figure 3C) MAS NMR spectra display resonances from all phosphate groups, mobile phosphate groups, and immobile phosphate groups in the casein micelle, respectively.
mobile components were identical when casein micelles were harvested at 5 or 20°C and when milk was stored at 4 or 20°C.

The existence of mobile and immobile colloidal calcium phosphate supports a model proposed by van Dijk (34) in which inorganic phosphates are present partly as stable calcium phosphate complexes immobilized by the colloidal formation and partly as unstable complexes that potentially have more freedom of motion.

The single-pulse MAS 31P NMR spectra of native ovine (Figure 3A, left column) and caprine casein micelles (Figure 3A, center column) display two well-resolved resonances superimposed on a broad resonance, which clearly resembled the corresponding resonances of bovine casein micelles in line positions and line widths. Similarly, the 31P spin-echo (Figure 3B) and cross-polarization (Figure 3C) MAS spectra for the micelles of the three species were almost identical, indicating both structural and dynamic similarities. Because the 31P cross-polarization MAS spectra that selectively display resonances from the mobile components were largely indistinguishable for the three types of micelles, the micelles were assumed to contain phosphates in environments that were structurally and morphologically similar to those of bovine micelles. Thus, parameters (chemical shift, line width, and line shape) that were identical to those used for the deconvolution of the immobile components in the bovine spectrum were employed as input for the deconvolutions of the 31P MAS spectra of ovine and caprine micelles. Despite obvious similarities, the resonance assigned to HAP in a mobile state (ca. 3.0 ppm) was smaller for caprine and ovine micelles (line width ~35 Hz) than for bovine micelles (line width ~70 Hz), for both intensity and line width. The narrow resonances at 1.4 ppm were assigned to SerP groups of ovine and caprine CMP. To verify this assignment, Figure 4 contains 31P liquid-state NMR spectra of purified CMP. However, the resonances from ovine, caprine, and bovine CMP were not identical to the resonances at 1.4 and 1.5 ppm in the spectra of the corresponding casein micelles. Because the dissolved CMP represents a model system, discrepancies in the chemical shift, line width, and number of resonances might be ascribed to an environmental change of the SerP residues when present in the buffer than when present in the native casein micelle.

To obtain a quantitative assessment of the various micellar components, the 31P MAS NMR spectra of the three types of micelles were deconvoluted, and the resulting intensities were used to estimate the ratios of organic to inorganic and mobile to immobile phosphates within the micelles (included in the legend of Figure 3). For all three species, this procedure led to a very similar ratio between organic and inorganic phosphates that was close to the range 0.77 to 0.83 reported previously (4). Evaluation of the amount of mobile inorganic phosphate using the deconvoluted signal intensities reveals that the ovine and caprine micelles contained a smaller amount than did bovine micelles. Furthermore, as judged from a calculated ratio between mobile phosphate groups of the κ-CN and the sum of all other phosphate resonances and in contrast to the phosphorylation patterns, κ-CN from all species apparently harbors the same amount of mobile SerP groups. However, the intensities of the 31P resonances from the organic components depend both on the concentration and the extent of phos-
Figure 4. The 31P nuclear magnetic resonance (NMR) spectra of ovine (A), caprine (B), and bovine (C) caseinomacropeptides dissolved in cacodylate buffer (pH 6.9). The spectra were recorded using single-pulse excitation, 4-s recycle delay, and 2048 (A and B) or 20,000 (C) transients.

phorylation. Hence, the discrepancy between the NMR data and the number of phosphorylation sites might be ascribed to differences in the composition of the micelles (e.g., caprine micelles are very low in the α_s components), the degree of phosphorylation of the individual caseins (21), and the possibility that part of the κ-CN might be in an immobilized state. Similarly, the smaller amount of mobile inorganic phosphate (e.g., HAP) in ovine and caprine micelles might reflect differences in the size of the micelles between the species (21).

We conclude that the casein micelles from the three species are alike in dynamic behavior of the micelles and the colloid formation with inorganic calcium phosphate. It has been possible to differentiate and, to a certain degree, quantitate the signals from mobile and immobile as well as organic and inorganic phosphates in native casein micelles. This study emphasizes that MAS 31P NMR represents a useful method for obtaining information about the structure and dynamics of organic and inorganic phosphates in biological macromolecules with regions of restricted motion, and the potential use of this method to dairy products has recently been reported (9).

ACKNOWLEDGMENTS

This work is part of the FØTEK program funded by the Danish Government and the Danish Dairy Board. This research was also supported by grants from Aarhus University Research Foundation, Carlsberg-fondet, the Danish Natural Science Research Council, and the Danish Technical Research Council. We thank Hanne A. Due, Roy E. Guldberg, and Lise Møller for technical assistance. Special thanks are expressed to John Hermansen, the National Institute of Animal Science, Tjele, Denmark; Regitse Johnsen, Aggersborggaard, Løgstø, Denmark; Órums sogn udviklingsmejeri, Hjallerup, Denmark; and Andreas Madsen, MD Foods Research and Development Center, Brabrand, Denmark, for providing the different milk samples.

REFERENCES

Journal of Dairy Science Vol. 80, No. 4, 1997

