Advertisement
Article| Volume 80, ISSUE 8, P1512-1519, August 1997

Bacteriophage Resistance in Lactococcus lactis Engineered by Replacement of a Gene for a Bacteriophage Receptor

  • Author Footnotes
    1 Present address: Department of Cancer Biology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157.
    K.C. Garbutt
    Footnotes
    1 Present address: Department of Cancer Biology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157.
    Affiliations
    Department of Microbiology, Nash Hall 220, and The Center for Gene Research and Biotechnology, Oregon State University, Corvallis 97331-3804
    Search for articles by this author
  • J. Kraus
    Affiliations
    Department of Microbiology, Nash Hall 220, and The Center for Gene Research and Biotechnology, Oregon State University, Corvallis 97331-3804
    Search for articles by this author
  • B.L. Geller
    Correspondence
    Corresponding author.
    Affiliations
    Department of Microbiology, Nash Hall 220, and The Center for Gene Research and Biotechnology, Oregon State University, Corvallis 97331-3804

    Department of Microbiology, Nash Hall 220, and The Western Dairy Center, Utah State University, Logan 84322
    Search for articles by this author
  • Author Footnotes
    1 Present address: Department of Cancer Biology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, NC 27157.
      This paper is only available as a PDF. To read, Please Download here.

      Abstract

      The objective of this study was to construct a food-grade, phage-resistant strain of Lactococcus lactis by replacing a specific chromosomal gene with an allele that had been mutated in vitro. Lactococcus lactis contains a chromosomal gene (pip) that is required for infection by bacteriophages of the c2 species. A nonsense mutation in pip was constructed in vitro. The wild-type pip on the chromosome of strain LM2301 was exchanged for the mutated pip. The exchange left no antibiotic resistance genes or nonlactococcal DNA in the engineered strain (JK101). JK101 was resistant to the same phages as a strain that contains a spontaneous mutation in pip. JK101 grew as well as the pip+ isogenic strain did in minimal or rich media.

      Key words

      Abbreviation Key:

      M17G (M17 growth medium plus glucose), M17G ery (M17G plus erythromycin), PCR (polymerase chain reaction)

      References

        • Babu K.S.
        • Spence W.S.
        • Monteville M.R.
        • Geller B.L.
        Characterization of a cloned gene (pip) from Lactococcus lactis required for phage infection.
        in: Ferretti J.J. Gilmore M.S. Klaenhammer T.R. Brown F. Genetics of Streptococci, Enterococci and Lactococci. Karger, Basel, Switzerland1995: 569
        • Biswas I.
        • Gruss A.
        • Ehrlich S.D.
        • Maguin E.
        Highefficiency gene inactivation and replacement for gram-positive bacteria.
        J. Bacteriol. 1993; 175: 3628
        • Chopin A.
        • Chopin M.C.
        • Moillo-Batt A.
        • Langella P.
        Two plasmid-determined restriction and modification systems in Streptococcus lactis.
        Plasmid. 1984; 11: 260
        • Dornan S.
        • Collins M.A.
        High efficiency electroporation of Lactococcus lactis subsp. lactis with plasmid pGB301.
        Lett. Appl. Microbiol. 1990; 11: 62
        • Froseth B.R.
        • Harlander S.K.
        • McKay L.L.
        Plasmid-mediated reduced phage sensitivity in Streptococcus lactis KR5.
        J. Dairy Sci. 1988; 71: 275
        • Garvey P.C.
        • Hill
        • Fitzgerald G.F.
        The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration.
        Appl. Environ. Microbiol. 1996; 62: 676
        • Geller B.
        • Ivey R.G.
        • Trempy J.E.
        • Hettinger-Smith B.
        Cloning of a chromosomal gene required for phage infection of Lactococcus lactis subsp. lactis C2.
        J. Bacteriol. 1993; 175: 5510
        • Gopal P.K.
        • Crow V.L.
        Characterization of loosely associated material from the cell surface of Lactococcus lactis subsp. cremoris E8 and its phage-resistant variant strain 398.
        Appl. Environ. Microbiol. 1993; 59: 3177
        • Higgins D.L.
        • Sanozky-Dawes R.B.
        • Klaenhammer T.R.
        Restriction and modification activities from Streptococcus lactis ME2 are encoded by a self-transmissible plasmid, pTN20, that forms cointegrates during mobilization of lactosefermenting ability.
        J. Bacteriol. 1988; 170: 3435
        • Hill C.
        • Romero D.A.
        • McKenney D.S.
        • Finer K.R.
        • Klaenhammer T.R.
        Localization, cloning, and expression of genetic determinants for bacteriophage resistance (Hsp) from the conjugative plasmid pTR2030.
        Appl. Environ. Microbiol. 1989; 55: 1684
        • Huggins A.R.
        Progress in dairy starter culture technology.
        Food Technol. 1984; 38: 41
        • Jarvis A.W.
        • Fitzgerald G.F.
        • Mata M.
        • Mercenier A.
        • Neve H.
        • Powell I.B.
        • Ronda C.
        • Saxelin M.
        • Teuber M.
        Species and type phages of lactococcal bacteriophages.
        Intervirology. 1991; 32: 2
        • Jensen P.R.
        • Hammer K.
        Minimal requirements for exponential growth of Lactococcus lactis.
        Appl. Environ. Microbiol. 1993; 59: 4363
        • Klaenhammer T.R.
        Interactions of bacteriophages with lactic streptococci.
        Adv. Appl. Microbiol. 1984; 30: 1
        • Klaenhammer T.R.
        • Sanozky R.B.
        Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance, and lactose fermenting ability: evidence for a high-frequency conjugal plasmid responsible for abortive infection of virulent bacteriophage.
        J. Gen. Microbiol. 1985; 131: 1531
        • Laible N.J.
        • Rule P.L.
        • Harlander S.K.
        • McKay L.L.
        Identification and cloning of plasmid deoxyribonucleic acid coding for abortive phage infection from Streptococcus lactis ssp. diacetylactis KR2.
        J. Dairy Sci. 1987; 70: 2211
        • Lawrence R.C.
        • Heap H.A.
        • Limsowtin G.K.Y.
        • Jarvis A.W.
        Cheddar cheese starters: current knowledge and practices of phage characteristics and strain selection.
        J. Dairy Sci. 1978; 61: 1181
        • Limsowtin G.K.Y.
        • Heap H.A.
        • Lawrence R.C.
        A multiple starter concept for cheesemaking.
        N. Z. J. Dairy Sci. Technol. 1977; 12: 101
        • Limsowtin G.K.Y.
        • Terzaghi B.E.
        Phage resistant mutants: their selection and use in cheese factories.
        N. Z. J. Dairy Sci. Technol. 1976; 11: 251
        • Lucey M.
        • Daly C.
        • Fitzgerald G.F.
        Cell surface characteristics of Lactococcus lactis harbouring pCI528, a 46 kb plasmid encoding inhibition of bacteriophage adsorption.
        J. Gen. Microbiol. 1992; 138: 2137
        • McKay L.L.
        • Baldwin K.A.
        Conjugative 40- megadalton plasmid in Streptococcus lactis subsp. diacetylactis DRC3 is associated with resistance to nisin and bacteriophage.
        Appl. Environ. Microbiol. 1984; 47: 68
        • Monteville M.R.
        • Ardestani B.
        • Geller B.L.
        Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA.
        Appl. Environ. Microbiol. 1994; 60: 3204
        • Owen J.L.
        • Hay C.
        • Schuster D.M.
        • Rashtchian A.
        A highly efficient method of site-directed mutagenesis using PCR and UDG cloning.
        Focus. 1994; 16: 39
        • Sambrook J.
        • Fritsch E.F.
        • Maniatis T.
        Molecular Cloning: A Laboratory Manual.
        2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY1989
        • Sanders M.E.
        • Klaenhammer T.R.
        Evidence for plasmid linkage of restriction and modification in Streptococcus cremoris KH.
        Appl. Environ. Microbiol. 1981; 42: 944
        • Sanders M.E.
        • Klaenhammer T.R.
        Characterization of phage-sensitive mutants from a phage-insensitive strain of Streptococcus lactis: evidence for a plasmid determinant that prevents phage adsorption.
        Appl. Environ. Microbiol. 1983; 46: 1125
        • Sijtsma L.
        • Jansen N.
        • Hazeleger W.C.
        • Wouters J.T.M.
        • Hellingwerf K.J.
        Cell surface characteristics of bacteriophage-resistant Lactococcus lactis subsp. cremoris SK110 and its bacteriophage-sensitive variant SK112.
        Appl. Environ. Microbiol. 1990; 56: 3230
        • Sijtsma L.A.
        • Sterkenburg A.
        • Wouters J.T.M.
        Properties of the cell walls of Lactococcus lactis subsp. cremoris SK110 and SK112 and their relation to bacteriophage resistance.
        Appl. Environ. Microbiol. 1988; 54: 2808
        • Southern E.M.
        Detection of specific sequences among DNA fragments separated by gel electrophoresis.
        J. Mol. Biol. 1975; 98: 503
        • Terzaghi B.E.
        • Sandine W.E.
        Improved media for lactic streptococci and their bacteriophages.
        Appl. Microbiol. 1975; 29: 807
        • Thunell R.K.
        • Sandine W.E.
        • Bodyfelt F.W.
        Phageinsensitive, multiple-strain starter approach to Cheddar cheese making.
        J. Dairy Sci. 1981; 64: 2270
        • Valyasevi R.
        • Sandine W.E.
        • Geller B.L.
        The bacteriophage kh receptor of Lactococcus lactis subsp. cremoris KH is the rhamnose of the extracellular wall polysaccharide.
        Appl. Environ. Microbiol. 1990; 56: 1882
        • Valyasevi R.
        • Sandine W.E.
        • Geller B.L.
        A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2.
        J. Bacteriol. 1991; 173: 6095
        • Valyasevi R.
        • Sandine W.E.
        • Geller B.L.
        Lactococcus lactis ssp. lactis C2 bacteriophage sk1 involving rhamnose and glucose moieties in the cell wall.
        J. Dairy Sci. 1994; 77: 1
        • Walsh P.M.
        • McKay L.L.
        Recombinant plasmid associated with cell aggregation and high-frequency conjugation of Streptococcus lactis ML3.
        J. Bacteriol. 1981; 146: 937