Screening of Lactic Acid Bacteria for Bile Salt Hydrolase Activity

      This paper is only available as a PDF. To read, Please Download here.


      Bile salt hydrolysis is an important metabolic reaction in the bile salt metabolism of mammals. This reaction has a facilitating effect for bile salt excretion but can also be involved in various illnesses. In recent years interest has increased to use bile salt hydrolysis to influence the cholesterol metabolism of humans and farm animals.
      To understand the distribution and range of bile salt hydrolase activity in lactic acid bacteria, we screened more than 300 strains of the genera Bifidobacterium and Lactobacillus and the species Lactococcus lactis, Leuconostoc mesenteroides, and Streptococcus thermophilus. Results obtained for 273 strains showed that bile salt hydrolase activity is common in Bifidobacterium and Lactobacillus but absent in L. lactis, Leu. mesenteroides, and S. thermophilus. Nearly all bifidobacteria species and strains have bile salt hydrolase activity, whereas this activity can only be found in selected species of lactobacilli. A strong correlation can be observed between the habitat of a genus or species and the presence of bile salt hydrolase activity. Most often bile salt hydrolase activity is found in strains that have been isolated from the intestines or from feces from mammals—an environment rich in conjugated and unconjugated bile acids. Strains and species from other habitats like milk or vegetables—environments from which bile salts are absent—do normally not have bile salt hydrolase activity.
      In two independent assays, we established that bile salt hydrolase activity in bifidobacteria is, in general, much higher than in lactobacilli.

      Key words

      Abbreviation Key:

      BSH (bile salt hydrolase)


        • Briggs M.
        An improved medium for lactobacilli.
        J. Dairy Res. 1953; 20: 36-40
        • Chikai T.
        • Nakao H.
        • Uchida K.
        Deconjugation of bile acids by human intestinal bacteria implanted in germ-free rats.
        Lipids. 1987; 22: 669-671
        • Christiaens H.
        • Leer R.J.
        • Pouwels P.H.
        • Verstraete W.
        Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay.
        Appl. Environ. Microbiol. 1992; 58: 3792-3798
        • Coleman J.P.
        • Hudson L.L.
        Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens.
        Appl. Environ. Microbiol. 1995; 61: 2514-2520
        • Dashkevicz M.P.
        • Feighner S.D.
        Development of a differential medium for bile salt hydrolase-active Lactobacillus spp.
        Appl. Environ. Microbiol. 1989; 55: 11-16
        • De Man J.C.
        • Rogosa M.
        • Sharpe M.C.
        A medium for the cultivation of lactobacilli.
        J. Appl. Bacteriol. 1960; 23: 130-135
        • De Smet I.
        • Van Hoorde L.
        • De Saeyer N.
        • Vande Woestyne M.
        • Verstraete W.
        In vitro study of bile salt hydrolase (BSH) activity of BSH isogenic Lactobacillus plantarum 80 strains and estimation of cholesterol lowering through enhanced BSH activity.
        Microb. Ecol. Health Dis. 1994; 7: 315-329
        • De Smet I.
        • Van Hoorde L.
        • Vande Woestyne M.
        • Christiaens H.
        • Verstraete W.
        Significance of bile salt hydrolytic activities of lactobacilli.
        J. Appl. Bacteriol. 1995; 79: 292-301
        • Dowling R.H.
        • Murphy G.M.
        Bile acids and aquired disease: old hypotheses, new concepts.
        in: Cohen R.D. Lewis B. Alberti K.G.M.M. Denman A.M. The Metabolic and Molecular Basis of Aquired Disease. Baillière Tindall, London, United Kingdom1990: 1231-1245
        • Elkins C.A.
        • Savage D.C.
        Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100.
        J. Bacteriol. 1998; 180: 4344-4349
        • Eyssen H.
        Role of the gut microflora in metabolism of lipids and sterols.
        Proc. Nutr. Soc. 1973; 32: 59-63
        • Ferrari A.
        • Pacini N.
        • Canzi E.
        A note on bile acids transformations by strains of Bifidobacterium.
        J. Appl. Bacteriol. 1980; 49: 193-197
        • Gilliland S.E.
        • Speck M.L.
        Deconjugation of bile acids by intestinal lactobacilli.
        Appl. Environ. Microbiol. 1977; 33: 15-18
        • Gopal-Srivastava R.
        • Hylemon P.B.
        Purification and characterization of bile salt hydrolase from Clostridium perfringens.
        J. Lipid Res. 1988; 29: 1079-1085
        • Grill J.P.
        • Schneider F.
        • Crociani J.
        • Ballongue J.
        Purification and characterization of conjugated bile salt hydrolase from Bifidobacterium longum BB536.
        Appl. Environ. Microbiol. 1995; 61: 2577-2582
        • Hay D.W.
        • Carey M.C.
        Chemical species of lipids in bile.
        Hepatology. 1990; 12: 6S-14S
        • Kishinaka M.
        • Umeda A.
        • Kuroki S.
        High concentrations of conjugated bile acids inhibit bacterial growth of Clostridium perfringens and induce its extracellular cholylglycine hydrolase.
        Steroids. 1994; 59: 485-489
        • Kobashi K.
        • Nishizawa I.
        • Yamada T.
        • Hase J.
        A new hydrolase specific for taurine-conjugates of bile acids.
        J. Biochem. 1978; 84: 495-497
        • Lee Y.P.
        • Takahashi T.
        An improved colorimetric determination of amino acids with the use of ninhydrin.
        Anal. Biochem. 1966; 14: 71-77
        • Leer R.J.
        • Christiaens H.
        • Verstraete W.
        • Peters L.
        • Posno M.
        • Pouwels P.H.
        Gene disruption in Lactobacillus plantarum strain 80 by site-specific recombination: isolation of a mutant strain deficient in conjugated bile salt hydrolase activity.
        Mol. Gen. Genet. 1993; 239: 269-272
        • Lundeen S.G.
        • Savage D.C.
        Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100.
        J. Bacteriol. 1990; 172: 4171-4177
        • Marteau P.
        • Gerhardt M.F.
        • Myara A.
        • Bouvier E.
        • Trivin F.
        • Rambaud J.C.
        Metabolism of bile salts by alimentary bacteria during transit in the human small intestine.
        Microb. Ecol. Health Dis. 1995; 8: 151-157
        • Masuda N.
        Deconjugation of bile salts by Bacteroides and Clostridium.
        Microbiol. Immunol. 1981; 25: 1-11
        • Midtvedt T.
        • Norman A.
        Bile acid transformations by microbial strains belonging to genera found in intestinal contents.
        Acta Path. Microbiol. Scandinav. 1967; 71: 629-638
        • O'Sullivan M.G.
        • Thornton G.
        • O'Sullivan G.C.
        • Collins J.K.
        Probiotic bacteria myth or reality? Trends Food Sci.
        Technol. 1992; 3: 309-314
        • Shimada K.
        • Bricknell K.S.
        • Finegold S.M.
        Deconjugation of bile acids by intestinal bacteria: review of litarature and additional studies.
        J. Infect. Dis. 1969; 119: 273-281
        • Staggers J.E.
        • Hernell O.
        • Stafford R.J.
        • Carey M.C.
        Physical-chemical behavior of dietary and biliary lipids during intestinal digestion and absorption. 1. Phase behavior and aggregation states of model lipid systems patterned after aqueous duodenal contents of healthy adult human beings.
        Biochemistry. 1990; 29: 2028-2040
        • Stellwag E.J.
        • Hylemon P.B.
        Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis.
        Biochim. Biophys. Acta. 1976; 452: 165-176
        • Tannock G.W.
        • Bateup J.M.
        • Jenkinson H.F.
        Effect of sodium taurocholate on the in vitro growth of Lactobacilli.
        Microb. Ecol. 1997; 33: 163-167
        • Tannock G.W.
        • Dashkevicz M.P.
        • Feighner S.D.
        Lactobacilli and bile salt hydrolase in the murine intestinal tract.
        Appl. Environ. Microbiol. 1989; 55: 1848-1851
        • Taranto M.P.
        • Sesma F.
        • Holgado A.D.
        • deValdez G.F.
        Bile salts hydrolase plays a key role on cholesterol removal by Lactobacillus reuteri.
        Biotechn. Lett. 1997; 19: 845-847
        • Terzaghi B.E.
        • Sandine W.
        Improved medium for lactic streptococci and their bacteriophages.
        Appl. Environ. Microbiol. 1975; 29: 807-813
        • Wood B.J.B.
        • Holzapfel W.H.
        The genera of lactic acid bacteria.
        Blackie Acad. & Prof, London, United Kingdom1995